Deterministic nanoparticle assemblies: from substrate to solution

被引:10
作者
Barcelo, Steven J. [1 ]
Kim, Ansoon [2 ]
Gibson, Gary A. [1 ]
Norris, Kate J. [3 ,4 ]
Yamakawa, Mineo [1 ]
Li, Zhiyong [1 ]
机构
[1] Hewlett Packard Labs, Palo Alto, CA 94043 USA
[2] Korea Res Inst Stand & Sci, Taejon, South Korea
[3] Univ Calif Santa Cruz, Baskin Sch Engn, Santa Cruz, CA 95064 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
nanoparticle; self-assembly; plasmonics; SERS; chemical sensing; ENHANCED RAMAN-SCATTERING; GOLD; SURFACE; SILVER; ARRAYS; DIMERS;
D O I
10.1088/0957-4484/25/15/155302
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The deterministic assembly of metallic nanoparticles is an exciting field with many potential benefits. Many promising techniques have been developed, but challenges remain, particularly for the assembly of larger nanoparticles which often have more interesting plasmonic properties. Here we present a scalable process combining the strengths of top down and bottom up fabrication to generate deterministic 2D assemblies of metallic nanoparticles and demonstrate their stable transfer to solution. Scanning electron and high-resolution transmission electron microscopy studies of these assemblies suggested the formation of nanobridges between touching nanoparticles that hold them together so as to maintain the integrity of the assembly throughout the transfer process. The application of these nanoparticle assemblies as solution-based surface-enhanced Raman scattering (SERS) materials is demonstrated by trapping analyte molecules in the nanoparticle gaps during assembly, yielding uniformly high enhancement factors at all stages of the fabrication process.
引用
收藏
页数:6
相关论文
共 45 条
[1]   Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots [J].
Alonso-Gonzalez, P. ;
Albella, P. ;
Schnell, M. ;
Chen, J. ;
Huth, F. ;
Garcia-Etxarri, A. ;
Casanova, F. ;
Golmar, F. ;
Arzubiaga, L. ;
Hueso, L. E. ;
Aizpurua, J. ;
Hillenbrand, R. .
NATURE COMMUNICATIONS, 2012, 3
[2]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[3]   Fabrication of Deterministic Nanostructure Assemblies with Sub-nanometer Spacing Using a Nanoimprinting Transfer Technique [J].
Barcelo, Steven J. ;
Kim, Ansoon ;
Wu, Wei ;
Li, Zhiyong .
ACS NANO, 2012, 6 (07) :6446-6452
[4]   Capillary-Force-Induced Clustering of Micropillar Arrays: Is It Caused by Isolated Capillary Bridges or by the Lateral Capillary Meniscus Interaction Force? [J].
Chandra, Dinesh ;
Yang, Shu .
LANGMUIR, 2009, 25 (18) :10430-10434
[5]   High-Purity Separation of Gold Nanoparticle Dimers and Trimers [J].
Chen, Gang ;
Wang, Yong ;
Tan, Li Huey ;
Yang, Miaoxin ;
Tan, Lee Siew ;
Chen, Yuan ;
Chen, Hongyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (12) :4218-+
[6]   Integration of colloidal nanocrystals into lithographically patterned devices [J].
Cui, Y ;
Bjork, MT ;
Liddle, JA ;
Sonnichsen, C ;
Boussert, B ;
Alivisatos, AP .
NANO LETTERS, 2004, 4 (06) :1093-1098
[7]   Controlled Collapse of High-Aspect-Ratio Nanostructures [J].
Duan, Huigao ;
Yang, Joel K. W. ;
Berggren, Karl K. .
SMALL, 2011, 7 (18) :2661-2668
[8]   Directed Self-Assembly at the 10 nm Scale by Using Capillary Force-Induced Nanocohesion [J].
Duan, Huigao ;
Berggren, Karl K. .
NANO LETTERS, 2010, 10 (09) :3710-3716
[9]   Self-Assembled Plasmonic Nanoparticle Clusters [J].
Fan, Jonathan A. ;
Wu, Chihhui ;
Bao, Kui ;
Bao, Jiming ;
Bardhan, Rizia ;
Halas, Naomi J. ;
Manoharan, Vinothan N. ;
Nordlander, Peter ;
Shvets, Gennady ;
Capasso, Federico .
SCIENCE, 2010, 328 (5982) :1135-1138
[10]   Measurement of the distribution of site enhancements in surface-enhanced Raman scattering [J].
Fang, Ying ;
Seong, Nak-Hyun ;
Dlott, Dana D. .
SCIENCE, 2008, 321 (5887) :388-392