On commutative subalgebras of the Weyl algebra related to commuting operators of arbitrary rank and genus

被引:19
作者
Mokhov, O. I. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
commutative algebra; Weyl algebra; commuting operators; DIFFERENTIAL-OPERATORS; CURVE;
D O I
10.1134/S0001434613070298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:298 / 300
页数:3
相关论文
共 14 条
[1]  
[Anonymous], 1979, SOV MATH DOKL
[2]  
Burchnall JL, 1923, P LOND MATH SOC, V21, P420
[3]  
DEHORNOY P, 1981, COMPOS MATH, V43, P71
[4]  
DIXMIER J, 1968, B SOC MATH FR, V96, P209
[6]  
Krichever I. M., 1978, Funct. Anal. Appl., V12, P20, DOI 10.1007/BF01681429
[7]  
Mironov AE, 2009, SIB ELECTRON MATH RE, V6, P533
[8]  
Mironov A. E., ARXIV11073356
[9]   Commuting rank 2 differential operators corresponding to a curve of genus 2 [J].
Mironov, AE .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2005, 39 (03) :240-243
[10]   A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2 [J].
Mironov, AE .
SBORNIK MATHEMATICS, 2004, 195 (5-6) :711-722