A GLOBAL EXISTENCE RESULT FOR THE SEMIGEOSTROPHIC EQUATIONS IN THREE DIMENSIONAL CONVEX DOMAINS

被引:19
作者
Ambrosio, Luigi [1 ]
Colombo, Maria [1 ]
De Philippis, Guido [2 ]
Figalli, Alessio [3 ]
机构
[1] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[2] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[3] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
关键词
Optimal transportation; semigeostrophic equations; MONGE-AMPERE EQUATION; TRANSPORT-EQUATION; CAUCHY-PROBLEM; REGULARITY; STABILITY;
D O I
10.3934/dcds.2014.34.1251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Exploiting recent regularity estimates for the Monge-Ampere equation, under some suitable assumptions on the initial data we prove global in-time existence of Eulerian distributional solutions to the semigeostrophic equations in 3-dimensional convex domains.
引用
收藏
页码:1251 / 1268
页数:18
相关论文
共 28 条
[1]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[2]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[3]  
Ambrosio L, 2008, LECT NOTES MATH, V1927, P1
[4]   Existence of Eulerian Solutions to the Semigeostrophic Equations in Physical Space: The 2-Dimensional Periodic Case [J].
Ambrosio, Luigi ;
Colombo, Maria ;
De Philippis, Guido ;
Figalli, Alessio .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (12) :2209-2227
[5]  
[Anonymous], 2006, A Mathematical Theory of Large-Scale Atmosphere/Ocean Flow
[6]  
[Anonymous], 2015, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics
[7]   Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampere transport problem [J].
Benamou, JD ;
Brenier, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (05) :1450-1461
[8]  
CAFFARELLI L. A., 1992, Journal of the American Mathematical Society, V5, P99, DOI [DOI 10.2307/2152752, 10.2307/2152752]
[9]   Boundary regularity of maps with convex potentials .2. [J].
Caffarelli, LA .
ANNALS OF MATHEMATICS, 1996, 144 (03) :453-496
[10]   SOME REGULARITY PROPERTIES OF SOLUTIONS OF MONGE AMPERE EQUATION [J].
CAFFARELLI, LA .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :965-969