Frechet quotients of spaces of real-analytic functions

被引:14
作者
Domanski, P
Frerick, L
Vogt, D
机构
[1] A Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Polish Acad Sci, Inst Math, PL-61614 Poznan, Poland
[3] Berg Univ Gesamthsch Wuppertal, D-42097 Wuppertal, Germany
关键词
space of real-analytic functions; Frechet space; quotient space; countably normed; (DN phi)-property; splitting of short exact sequences;
D O I
10.4064/sm159-2-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize all Frechet quotients of the space A(Omega) of (complex-valued) real-analytic functions on an arbitrary open set Omegasubset of or equal toR(d). We also characterize those Frechet spaces E such that every short exact sequence of the form 0-->E-->X-->A(Omega)-->0 splits.
引用
收藏
页码:229 / 245
页数:17
相关论文
共 26 条
[1]   Real analytic curves in Frechet spaces and their duals [J].
Bonet, J ;
Domanski, P .
MONATSHEFTE FUR MATHEMATIK, 1998, 126 (01) :13-36
[2]   Parameter dependence of solutions of partial differential equations in spaces of real analytic functions [J].
Bonet, J ;
Domanski, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) :495-503
[3]  
Braun R. W., 1990, Results Math., V17, P206
[4]  
Cartan H., 1957, B SOC MATH FRANCE, V85, P77
[5]   A splitting theory for the space of distributions [J].
Domanski, P ;
Vogt, D .
STUDIA MATHEMATICA, 2000, 140 (01) :57-77
[6]   Composition operators on spaces of real analytic functions [J].
Domanski, P ;
Langenbruch, M .
MATHEMATISCHE NACHRICHTEN, 2003, 254 :68-86
[7]  
Domanski P, 2001, N-HOLLAND M, V189, P113
[8]   The space of real-analytic functions has no basis [J].
Domanski, P ;
Vogt, D .
STUDIA MATHEMATICA, 2000, 142 (02) :187-200
[9]  
DOMANSKI P, IN PRESS ARCH MATH B
[10]  
DOMANSKI P, IN PRESS P AM MATH S