DXQ-Net: Differentiable LiDAR-Camera Extrinsic Calibration Using Quality-aware Flow

被引:14
作者
Jing, Xin [1 ,2 ]
Ding, Xiaqing [2 ]
Xiong, Rong [1 ]
Deng, Huanjun [2 ]
Wang, Yue [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control & Technol, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou 310052, Peoples R China
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
基金
国家重点研发计划;
关键词
D O I
10.1109/IROS47612.2022.9981418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate LiDAR-camera extrinsic calibration is a precondition for many multi-sensor systems in mobile robots. Most calibration methods rely on laborious manual operations and calibration targets. While working online, the calibration methods should be able to extract information from the environment to construct the cross-modal data association. Convolutional neural networks (CNNs) have powerful feature extraction ability and have been used for calibration. However, most of the past methods solve the extrinsic as a regression task, without considering the geometric constraints involved. In this paper, we propose a novel end-to-end extrinsic calibration method named DXQ-Net, using a differentiable pose estimation module for generalization. We formulate a probabilistic model for LiDAR-camera calibration flow, yielding a prediction of uncertainty to measure the quality of LiDAR-camera data association. Testing experiments illustrate that our method achieves a competitive with other methods for the translation component and state-of-the-art performance for the rotation component. Generalization experiments illustrate that the generalization performance of our method is significantly better than other deep learning-based methods.
引用
收藏
页码:6235 / 6241
页数:7
相关论文
共 50 条
[31]   High efficient extrinsic parameter calibration method of 3D LiDAR-camera system [J].
Liu J. ;
Tang X. ;
Jia X. ;
Yang D. ;
Li T. .
Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (11) :64-72
[32]   Robust Extrinsic Calibration for LiDAR-Camera Systems via Depth and Height Complementary Supervision Network [J].
Chen, Yaqing ;
Wang, Huaming .
IEEE ACCESS, 2025, 13 :35818-35828
[33]   Extrinsic parameter calibration of 2D LiDAR-camera using edge matching and removal of infrared cut filter [J].
Kim, Deokkyu ;
Kim, Sungho .
SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVIII, 2019, 11018
[34]   General, Single-shot, Target-less, and Automatic LiDAR-Camera Extrinsic Calibration Toolbox [J].
Koide, Kenji ;
Oishi, Shuji ;
Yokozuka, Masashi ;
Banno, Atsuhiko .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, :11301-11307
[35]   SemCal: Semantic LiDAR-Camera Calibration using Neural Mutual Information Estimator [J].
Jiang, Peng ;
Osteen, Philip ;
Saripalli, Srikanth .
2021 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2021,
[36]   RGGNet: Tolerance Aware LiDAR-Camera Online Calibration With Geometric Deep Learning and Generative Model [J].
Yuan, Kaiwen ;
Guo, Zhenyu ;
Wang, Z. Jane .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :6956-6963
[37]   Online calibration of LiDAR-camera extrinsic parameters of tunnel mapping system with depth-constrained vibration compensation [J].
Hu, Han ;
Jiang, Ying ;
Dai, Zeyuan ;
Hao, Rui ;
Fan, Wenna ;
Zhang, Lihua ;
Ge, Xuming ;
Xu, Bo ;
Zhu, Qing .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 139
[38]   Targetless Automatic Edge-to-Edge Extrinsic Calibration of LiDAR-Camera System Based on Pure Laser Reflectivity [J].
Zhu, Weijie ;
Shan, Shuo ;
Tong, Chaoliu ;
Zhang, Kanjian ;
Wei, Haikun .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[39]   CalibBD: Extrinsic Calibration of the LiDAR and Camera Using a Bidirectional Neural Network [J].
Nguyen, An Duy ;
Yoo, Myungsik .
IEEE ACCESS, 2022, 10 :121261-121271
[40]   Extrinsic calibration of a 3D LIDAR and a camera using a trihedron [J].
Gong, Xiaojin ;
Lin, Ying ;
Liu, Jilin .
OPTICS AND LASERS IN ENGINEERING, 2013, 51 (04) :394-401