DXQ-Net: Differentiable LiDAR-Camera Extrinsic Calibration Using Quality-aware Flow

被引:14
作者
Jing, Xin [1 ,2 ]
Ding, Xiaqing [2 ]
Xiong, Rong [1 ]
Deng, Huanjun [2 ]
Wang, Yue [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control & Technol, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou 310052, Peoples R China
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
基金
国家重点研发计划;
关键词
D O I
10.1109/IROS47612.2022.9981418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate LiDAR-camera extrinsic calibration is a precondition for many multi-sensor systems in mobile robots. Most calibration methods rely on laborious manual operations and calibration targets. While working online, the calibration methods should be able to extract information from the environment to construct the cross-modal data association. Convolutional neural networks (CNNs) have powerful feature extraction ability and have been used for calibration. However, most of the past methods solve the extrinsic as a regression task, without considering the geometric constraints involved. In this paper, we propose a novel end-to-end extrinsic calibration method named DXQ-Net, using a differentiable pose estimation module for generalization. We formulate a probabilistic model for LiDAR-camera calibration flow, yielding a prediction of uncertainty to measure the quality of LiDAR-camera data association. Testing experiments illustrate that our method achieves a competitive with other methods for the translation component and state-of-the-art performance for the rotation component. Generalization experiments illustrate that the generalization performance of our method is significantly better than other deep learning-based methods.
引用
收藏
页码:6235 / 6241
页数:7
相关论文
共 50 条
[21]   Survey of Extrinsic Calibration on LiDAR-Camera System for Intelligent Vehicle: Challenges, Approaches, and Trends [J].
An, Pei ;
Ding, Junfeng ;
Quan, Siwen ;
Yang, Jiaqi ;
Yang, You ;
Liu, Qiong ;
Ma, Jie .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) :15342-15366
[22]   Extrinsic Calibration for Low Resolution LiDAR-camera System Incorporating Printed Checkerboard and AprilTag [J].
Sun, T-r. ;
Qie, J-b. ;
Gao, S-w. ;
Yang, X-y. ;
Wan, Z-b. .
LASERS IN ENGINEERING, 2025, 59 (1-3) :155-170
[23]   Extrinsic Calibration for LiDAR-Camera Systems Using Direct 3D-2D Correspondences [J].
Yi, Hao ;
Liu, Bo ;
Zhao, Bin ;
Liu, Enhai .
REMOTE SENSING, 2022, 14 (23)
[24]   Batch Differentiable Pose Refinement for In-The-Wild Camera/LiDAR Extrinsic Calibration [J].
Fu, Lanke Frank Tarimo ;
Fallon, Maurice .
CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229
[25]   An adaptive plug-and-play online extrinsic calibration approach for LiDAR-camera fusion [J].
Li, Boliang ;
Liu, Mengfang ;
Wang, Xiaohao ;
Li, Xinghui .
MEASUREMENT, 2025, 248
[26]   Galibr: Targetless LiDAR-Camera Extrinsic Calibration Method via Ground Plane Initialization [J].
Song, Wonho ;
Oh, Minho ;
Lee, Jaeyoung ;
Myung, Hyun .
2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, :217-223
[27]   CALIBRANK: EFFECTIVE LIDAR-CAMERA EXTRINSIC CALIBRATION BY MULTI-MODAL LEARNING TO RANK [J].
Wu, Xiannong ;
Zhang, Chi ;
Liu, Yuehu .
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, :3189-3193
[28]   LiDAR-camera system extrinsic calibration by establishing virtual point correspondences from pseudo calibration objects [J].
An, Pei ;
Gao, Yingshuo ;
Ma, Tao ;
Yu, Kun ;
Fang, Bin ;
Zhang, Jun ;
Ma, Jie .
OPTICS EXPRESS, 2020, 28 (12) :18261-18282
[29]   Accurate Calibration of LiDAR-Camera Systems using Ordinary Boxes [J].
Pusztai, Zoltan ;
Hajder, Levente .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :394-402
[30]   An Analytical Least-Squares Solution to the Line Scan LIDAR-Camera Extrinsic Calibration Problem [J].
Guo, Chao X. ;
Roumeliotis, Stergios I. .
2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, :2943-2948