DXQ-Net: Differentiable LiDAR-Camera Extrinsic Calibration Using Quality-aware Flow

被引:11
|
作者
Jing, Xin [1 ,2 ]
Ding, Xiaqing [2 ]
Xiong, Rong [1 ]
Deng, Huanjun [2 ]
Wang, Yue [1 ]
机构
[1] Zhejiang Univ, State Key Lab Ind Control & Technol, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou 310052, Peoples R China
来源
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2022年
基金
国家重点研发计划;
关键词
D O I
10.1109/IROS47612.2022.9981418
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate LiDAR-camera extrinsic calibration is a precondition for many multi-sensor systems in mobile robots. Most calibration methods rely on laborious manual operations and calibration targets. While working online, the calibration methods should be able to extract information from the environment to construct the cross-modal data association. Convolutional neural networks (CNNs) have powerful feature extraction ability and have been used for calibration. However, most of the past methods solve the extrinsic as a regression task, without considering the geometric constraints involved. In this paper, we propose a novel end-to-end extrinsic calibration method named DXQ-Net, using a differentiable pose estimation module for generalization. We formulate a probabilistic model for LiDAR-camera calibration flow, yielding a prediction of uncertainty to measure the quality of LiDAR-camera data association. Testing experiments illustrate that our method achieves a competitive with other methods for the translation component and state-of-the-art performance for the rotation component. Generalization experiments illustrate that the generalization performance of our method is significantly better than other deep learning-based methods.
引用
收藏
页码:6235 / 6241
页数:7
相关论文
共 50 条
  • [1] A cooperative LiDAR-camera scheme for extrinsic calibration
    Zamanakos, Georgios
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    2022 IEEE 14TH IMAGE, VIDEO, AND MULTIDIMENSIONAL SIGNAL PROCESSING WORKSHOP (IVMSP), 2022,
  • [2] Joint Camera Intrinsic and LiDAR-Camera Extrinsic Calibration
    Yan, Guohang
    He, Feiyu
    Shi, Chunlei
    Wei, Pengjin
    Cai, Xinyu
    Li, Yikang
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 11446 - 11452
  • [3] Extrinsic Calibration of Camera to LIDAR using a Differentiable Checkerboard Model
    Fu, Lanke Frank Tarimo
    Chebrolu, Nived
    Fallon, Maurice
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS, 2023, : 1825 - 1831
  • [4] Automatic and Targetless LiDAR-Camera Extrinsic Calibration Using Edge Alignment
    Yin, Jun
    Yan, Fei
    Liu, Yisha
    Zhuang, Yan
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19871 - 19880
  • [5] Automatic LiDAR-Camera Extrinsic Calibration Using Pseudoimage and Multiple Targets
    Dong, Yanchao
    Liu, Yuhao
    Li, Lingxiao
    Deng, Haiyang
    Tang, Jie
    Li, Jinsong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [6] Automatic LiDAR-Camera Calibration of Extrinsic Parameters Using a Spherical Target
    Toth, Tekla
    Pusztai, Zoltan
    Hajder, Levente
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 8580 - 8586
  • [7] 3D LIDAR-Camera Extrinsic Calibration Using an Arbitrary Trihedron
    Gong, Xiaojin
    Lin, Ying
    Liu, Jilin
    SENSORS, 2013, 13 (02) : 1902 - 1918
  • [8] LiDAR-Camera System Automatic Extrinsic Calibration in Rail Transit
    Wu, Qian
    Zhang, Jin
    Sheng, Jie
    Wu, Cheng
    Yuan, Hao
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 3380 - 3385
  • [9] CFNet: LiDAR-Camera Registration Using Calibration Flow Network
    Lv, Xudong
    Wang, Shuo
    Ye, Dong
    SENSORS, 2021, 21 (23)
  • [10] LiDAR-Camera Calibration Using Line Correspondences
    Bai, Zixuan
    Jiang, Guang
    Xu, Ailing
    SENSORS, 2020, 20 (21) : 1 - 17