High temperature accelerates growth of aerobic anoxygenic phototrophic bacteria in seawater

被引:16
|
作者
Sato-Takabe, Yuki [1 ,2 ]
Hamasaki, Koji [2 ]
Suzuki, Satoru [1 ]
机构
[1] Ehime Univ, Ctr Marine Environm Studies, Matsuyama, Ehime, Japan
[2] Univ Tokyo, Atmosphere & Ocean Res Inst, Kashiwa, Chiba, Japan
来源
MICROBIOLOGYOPEN | 2019年 / 8卷 / 05期
关键词
aerobic anoxygenic phototrophic bacteria; grazing effect; growth rate; temperature; BACTERIOPLANKTON ASSEMBLAGES; PHOTOHETEROTROPHIC BACTERIA; RATES; SIZE; ABUNDANCES; OCEAN;
D O I
10.1002/mbo3.710
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Temperature is an important controlling factor in the growth activity of all microorganisms. Aerobic anoxygenic phototrophic (AAP) bacteria actively grow in the ocean and are known as one of the main driving forces in organic matter cycling in surface seawater environments. Whether temperature change affects AAP bacteria activity from an ecological viewpoint remains an open question. To date, no known studies have reported the effect of temperature change on AAP bacteria growth in the ocean. We here show that the growth rate of AAP bacteria exceeded that of other bacterial types at high water temperatures in the absence of grazers. The slope of the regression line of the net growth rate of AAP bacteria as a function of water temperature was the same as that for non-AAP bacteria at all temperatures (10, 20, and 30 degrees C); however, when grazers were eliminated, it was 4.7 times higher than that of non-AAP bacteria. This result suggests that AAP bacteria are more responsive to water temperature increases than other bacteria and that AAP bacteria might become more dominant than other bacteria under elevated water temperatures.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Aerobic anoxygenic phototrophic bacteria in Antarctic sea ice and seawater
    Koh, Eileen Y.
    Phua, William
    Ryan, Ken G.
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2011, 3 (06): : 710 - 716
  • [2] Aerobic anoxygenic phototrophic bacteria
    Yurkov, VV
    Beatty, JT
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (03) : 695 - +
  • [3] Method for quantification of aerobic anoxygenic phototrophic bacteria
    Zhang, Y
    Jiao, NZ
    CHINESE SCIENCE BULLETIN, 2004, 49 (06): : 597 - 599
  • [4] Method for quantification of aerobic anoxygenic phototrophic bacteria
    ZHANG Yao & JIAO Nianzhi Key Laboratory of Marine Environmental Science
    ChineseScienceBulletin, 2004, (06) : 597 - 599
  • [5] Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
    Isabel Ferrera
    Olga Sánchez
    Eva Kolářová
    Michal Koblížek
    Josep M Gasol
    The ISME Journal, 2017, 11 : 2391 - 2393
  • [6] Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems
    JIAO Nianzhi
    Michael E. Sieracki
    ZHANG Yao
    DU Hailian
    ChineseScienceBulletin, 2003, (11) : 1064 - 1068
  • [7] Light enhances the growth rates of natural populations of aerobic anoxygenic phototrophic bacteria
    Ferrera, Isabel
    Sanchez, Olga
    Kolarova, Eva
    Koblizek, Michal
    Gasol, Josep M.
    ISME JOURNAL, 2017, 11 (10): : 2391 - 2393
  • [8] Aerobic anoxygenic phototrophic bacteria and their roles in marine ecosystems
    Jiao, NZ
    Sieracki, ME
    Zhang, Y
    Du, HL
    CHINESE SCIENCE BULLETIN, 2003, 48 (11): : 1064 - 1068
  • [9] Extraction and quantification of pigments in aerobic anoxygenic phototrophic bacteria
    Ruivo, Mickael
    Cartaxana, Paulo
    Cardoso, Maria Ines
    Tenreiro, Ana
    Tenreiro, Rogerio
    Jesus, Bruno
    LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2014, 12 : 338 - 350
  • [10] Leucine incorporation by aerobic anoxygenic phototrophic bacteria in the Delaware estuary
    Monica R Stegman
    Matthew T Cottrell
    David L Kirchman
    The ISME Journal, 2014, 8 : 2339 - 2348