Contrastive Re-localization and History Distillation in Federated CMR Segmentation

被引:14
作者
Qi, Xiaoming [1 ]
Yang, Guanyu [1 ,3 ]
He, Yuting [1 ]
Liu, Wangyan [2 ]
Islam, Ali [5 ]
Li, Shuo [4 ]
机构
[1] Southeast Univ, LIST, Minist Educ, Key Lab Comp Network & Informat Integrat, Nanjing 210096, Peoples R China
[2] Nanjing Med Univ, Affiliated Hosp 1, Dept Radiol, Nanjing, Peoples R China
[3] Southeast Univ, Jiangsu Prov Joint Int Res Lab Med Informat Proc, Nanjing 210096, Peoples R China
[4] Univ Western Ontario, Dept Med Biophys, London, ON, Canada
[5] St Josephs Hlth Care London, London, ON, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V | 2022年 / 13435卷
关键词
Federated learning; Contractive learning; Momentum distillation;
D O I
10.1007/978-3-031-16443-9_25
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Federated learning (FL) has shown value in multi-center multi-sequence cardiac magnetic resonance (CMR) segmentation, due to imbalanced CMR distributions and privacy preservation in clinical practice. However, the larger heterogeneity among multi-center multi-sequence CMR brings challenges to the FL framework: (1) Representation bias in the model fusion. The FL server model, which is generated by an average fusion of heterogeneous client models, is biased to representation close to the mean distribution and away from the long-distance distribution. Hence, the FL has poor representation ability. (2) Optimization stop in the model replacing. The heterogeneous server model replacing client model in FL directly causes the long-distance clients to utilize worse optimization to replace the original optimization. The client has to recover the optimization with the worse initialization, hence it lacks the continuous optimization ability. In this work, a cross-center cross-sequence medical image segmentation FL framework (FedCRLD) is proposed for the first time to facilitate multi-center multi-sequence CMR segmentation. (1) The contrastive re-localization module (CRL) of FedCRLD enables the correct representation from the heterogeneous model by embedding a novel contrastive difference metric of mutual information into a cross-attention localization transformer to transfer client-correlated knowledge from server model without bias. (2) The momentum distillation strategy (MD) of FedCRLD enables continuous optimization by conducting self-training on a dynamically updated client momentum bank to refine optimization by local correct optimization history. FedCRLD is validated on 420 CMR images 6 clients from 2 public datasets scanned by different hospitals, devices and contrast agents. Our FedCRLD achieves superior performance on multi-center multi-sequence CMR segmentation (average dice 85.96%). https:// github.com/JerryQseu/FedCRLD.
引用
收藏
页码:256 / 265
页数:10
相关论文
共 19 条
[1]   An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation [J].
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Pollefeys, Marc ;
Konukoglu, Ender .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :111-119
[2]   Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge [J].
Campello, Victor M. ;
Gkontra, Polyxeni ;
Izquierdo, Cristian ;
Martin-Isla, Carlos ;
Sojoudi, Alireza ;
Full, Peter M. ;
Maier-Hein, Klaus ;
Zhang, Yao ;
He, Zhiqiang ;
Ma, Jun ;
Parreno, Mario ;
Albiol, Alberto ;
Kong, Fanwei ;
Shadden, Shawn C. ;
Acero, Jorge Corral ;
Sundaresan, Vaanathi ;
Saber, Mina ;
Elattar, Mustafa ;
Li, Hongwei ;
Menze, Bjoern ;
Khader, Firas ;
Haarburger, Christoph ;
Scannell, Cian M. ;
Veta, Mitko ;
Carscadden, Adam ;
Punithakumar, Kumaradevan ;
Liu, Xiao ;
Tsaftaris, Sotirios A. ;
Huang, Xiaoqiong ;
Yang, Xin ;
Li, Lei ;
Zhuang, Xiahai ;
Vilades, David ;
Descalzo, Martin L. ;
Guala, Andrea ;
La Mura, Lucia ;
Friedrich, Matthias G. ;
Garg, Ria ;
Lebel, Julie ;
Henriques, Filipe ;
Karakas, Mahir ;
Cavus, Ersin ;
Petersen, Steffen E. ;
Escalera, Sergio ;
Segui, Santi ;
Rodriguez-Palomares, Jose F. ;
Lekadir, Karim .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3543-3554
[3]   Deep Learning for Cardiac Image Segmentation: A Review [J].
Chen, Chen ;
Qin, Chen ;
Qiu, Huaqi ;
Tarroni, Giacomo ;
Duan, Jinming ;
Bai, Wenjia ;
Rueckert, Daniel .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2020, 7
[4]  
Chen Z, 2021, LECT NOTES COMPUT SC, V12903, P347, DOI [10.1007/978-3-030-87199-4_33, 10.1007/978-981-16-1160-5_27]
[5]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[6]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[7]   Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Maier-Hein, Klaus H. .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :120-129
[8]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[9]   Emidec: A Database Usable for the Automatic Evaluation of Myocardial Infarction from Delayed-Enhancement Cardiac MRI [J].
Lalande, Alain ;
Chen, Zhihao ;
Decourselle, Thomas ;
Qayyum, Abdul ;
Pommier, Thibaut ;
Lorgis, Luc ;
de la Rosa, Ezequiel ;
Cochet, Alexandre ;
Cottin, Yves ;
Ginhac, Dominique ;
Salomon, Michel ;
Couturier, Raphael ;
Meriaudeau, Fabrice .
DATA, 2020, 5 (04) :1-8
[10]  
Li T., 2020, P MACH LEARN SYST, V2, P429