We study the facet defining inequalities of the convex hull of a mixed-integer bilinear covering arising in trim-loss (or cutting stock) problem under the framework of disjunctive cuts. We show that all of them can be derived using a disjunctive procedure. Some of these are split cuts of rank one for a convex mixed-integer relaxation of the covering set, while others have rank at least two. For certain linear objective functions, the rank-one split cuts are shown to be sufficient for finding the optimal value over the convex hull of the covering set. A relaxation of the trim-loss problem has this property, and our computational results show that these rank-one inequalities find the lower bound quickly.
机构:
IBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USAIBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USA
Dash, S
Günlük, O
论文数: 0引用数: 0
h-index: 0
机构:
IBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USAIBM Corp, Thomas J Watson Res Ctr, Dept Math Sci, Yorktown Hts, NY 10598 USA
机构:
KTH Royal Inst Technol, Dept Math, Lindtstedtsvagen 25, S-10044 Stockholm, SwedenKTH Royal Inst Technol, Dept Math, Lindtstedtsvagen 25, S-10044 Stockholm, Sweden
Kronqvist, Jan
Li, Boda
论文数: 0引用数: 0
h-index: 0
机构:
ABB Corp Res Ctr, Wallstadter Str 59, D-68526 Ladenburg, GermanyKTH Royal Inst Technol, Dept Math, Lindtstedtsvagen 25, S-10044 Stockholm, Sweden
Li, Boda
Rolfes, Jan
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Dept Math, Lindtstedtsvagen 25, S-10044 Stockholm, SwedenKTH Royal Inst Technol, Dept Math, Lindtstedtsvagen 25, S-10044 Stockholm, Sweden