A Muntz type theorem for a family of corner cutting schemes

被引:8
作者
Ait-Haddou, Rachid [1 ,3 ]
Sakane, Yusuke [2 ]
Nomura, Taishin [1 ,3 ]
机构
[1] Osaka Univ, Ctr Adv Med Engn & Informat, Osaka 5608531, Japan
[2] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Osaka 5600043, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Osaka 5608531, Japan
关键词
Corner cutting schemes; Bezier curves; Gelfond-Bezier curves; Muntz spaces; Density of Muntz spaces;
D O I
10.1016/j.cagd.2012.12.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Dimension elevation process of Gelfond-Bezier curves generates a family of control polygons obtained through a sequence of corner cuttings. We give a Muntz type condition for the convergence of the generated control polygons to the underlying curve. The surprising emergence of the Muntz condition in the problem raises the question of a possible connection between the density questions of nested Chebyshev spaces and the convergence of the corresponding dimension elevation algorithms. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 253
页数:14
相关论文
共 13 条
[1]  
Ait-Haddou R., 2012, COMPUT AIDE IN PRESS
[2]   Bernstein Operators for Exponential Polynomials [J].
Aldaz, J. M. ;
Kounchev, O. ;
Render, H. .
CONSTRUCTIVE APPROXIMATION, 2009, 29 (03) :345-367
[3]  
[Anonymous], IZV AKAD NAUK SSSR M
[4]  
Erdelyi T., 1996, GRAD TEXTS MATH, V161
[5]  
HIRSCHMAN II, 1949, DUKE MATH J, V16, P433
[6]  
Lorentz G. G., 1953, Bernstein Polynomials
[7]  
Mazure M.-L., 1999, COMPUT AIDED GEOM D, V16, P291
[8]   Blossoming: A geometrical approach [J].
Mazure, ML .
CONSTRUCTIVE APPROXIMATION, 1999, 15 (01) :33-68
[9]   Nested sequences of Chebyshev spaces and shape parameters [J].
Mazure, ML ;
Laurent, PJ .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (06) :773-788
[10]  
MUNTZ C., 1914, H. A. Schwarz-Festschrift, P303