Feasibility of the use of disposable optical tongue based on neural networks for heavy metal identification and determination

被引:24
作者
Ariza-Avidad, M. [1 ]
Cuellar, M. P. [2 ]
Salinas-Castillo, A. [1 ]
Pegalajar, M. C. [2 ]
Vukovic, J. [3 ]
Capitan-Vallvey, L. F. [1 ]
机构
[1] Univ Granada, Fac Sci, Dept Analyt Chem, E-18071 Granada, Spain
[2] Univ Granada, Dept Comp Sci & Artificial Intelligence, ETS Ingn Informat & Telecomunicac, E-18071 Granada, Spain
[3] Univ Zagreb, Fac Pharm & Biochem, Dept Analyt & Control Med, HR-10000 Zagreb, Croatia
关键词
Heavy metals classification; Heavy metals determination; Artificial neural networks; Disposable optical array; COLORIMETRIC SENSOR ARRAY; ELECTRONIC TONGUE;
D O I
10.1016/j.aca.2013.04.035
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This study presents the development and characterization of a disposable optical tongue for the simultaneous identification and determination of the heavy metals Zn(II), CLIO and Ni(II). The immobilization of two chromogenic reagents, 1-(2-pyridylazo)-2-naphthol and Zincon, and their arrangement forms an array of membranes that work by complexation through a co-extraction equilibrium, producing distinct changes in color in the presence of heavy metals. The color is measured from the image of the tongue acquired by a scanner working in transmission mode using the H parameter (hue) of the HSV color space, which affords robust and precise measurements. The use of artificial neural networks (ANNs) in a two-stage approach based on color parameters, the H feature of the array, makes it possible to identify and determine the analytes. In the first stage, the metals present above a threshold of 10(-7) M are identified with 96% success, regardless of the number of metals present, using the H feature of the two membranes. The second stage reuses the H features in combination with the results of the classification procedure to estimate the concentration of each analyte in the solution with acceptable error. Statistical tests were applied to validate the model over real data, showing a high correlation between the reference and predicted heavy metal ion concentration. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 28 条
[1]   Speciation of iron(II), iron(III) and full-range pH monitoring using paptode: A simple colorimetric method as an appropriate alternative for optodes [J].
Abbaspour, A ;
Mehrgardi, MA ;
Noori, A ;
Kamyabi, MA ;
Khalafi-Nezhad, A ;
Rad, MNS .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 113 (02) :857-865
[2]   Pattern-based detection of different proteins using an array of fluorescent protein surface receptors [J].
Baldini, L ;
Wilson, AJ ;
Hong, J ;
Hamilton, AD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5656-5657
[3]   Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors [J].
Cantrell, K. ;
Erenas, M. M. ;
de Orbe-Paya, I. ;
Capitan-Vallvey, L. F. .
ANALYTICAL CHEMISTRY, 2010, 82 (02) :531-542
[4]   Sensor arrays for liquid sensing -: electronic tongue systems [J].
Ciosek, Patrycja ;
Wroblewski, Wojciech .
ANALYST, 2007, 132 (10) :963-978
[5]   An application of non-linear programming to train Recurrent Neural Networks in Time Series Prediction problems [J].
Cuellar, M. P. ;
Delgado, A. ;
Pegalajar, M. C. .
ENTERPRISE INFORMATION SYSTEMS VII, 2006, :95-+
[6]   Minimization of sensing elements for full-range optical pH device formulation [J].
Cuellar, M. P. ;
Capel-Cuevas, S. ;
Pegalajar, M. C. ;
de Orbe-Paya, I. ;
Capitan-Vallvey, L. F. .
NEW JOURNAL OF CHEMISTRY, 2011, 35 (05) :1042-1053
[7]   Applications of electronic noses and tongues in food analysis [J].
Deisingh, AK ;
Stone, DC ;
Thompson, M .
INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY, 2004, 39 (06) :587-604
[8]  
Deisingh AK, 2010, SENSORS FOR CHEMICAL AND BIOLOGICAL APPLICATIONS, P173, DOI 10.1201/9781420005042-c6
[9]   Memetic evolutionary training for recurrent neural networks:: an application to time-series prediction [J].
Delgado, M ;
Pegalajar, MC ;
Cuéllar, MP .
EXPERT SYSTEMS, 2006, 23 (02) :99-115
[10]   Multiobjective hybrid optimization and training of recurrent neural networks [J].
Delgado, Miguel ;
Cuellar, Manuel P. ;
Pegalajar, Maria Carmen .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (02) :381-403