Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants

被引:741
作者
Clara, M
Strenn, B
Gans, O
Martinez, E
Kreuzinger, N
Kroiss, H
机构
[1] Vienna Univ Technol, Inst Water Qual & Waste Managment, A-1040 Vienna, Austria
[2] Umweltbundesamt GmbH, A-1090 Vienna, Austria
关键词
wastewater treatment; endocrine disrupting chemicals; pharmaceuticals; musk fragrances; membrane bioreactor; removal efficiency;
D O I
10.1016/j.watres.2005.09.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Eight pharmaceuticals, two polycyclic musk fragrances and nine endocrine disrupting chemicals were analysed in several waste water treatment plants (WWTPs). A membrane bioreactor in pilot scale was operated at different solid retention times (SRTs) and the results obtained are compared to conventional activated sludge plants (CASP) operated at different SRTs. The SRT is an important design parameter and its impact on achievable treatment efficiencies was evaluated. Different behaviours were observed for the different investigated compounds. Some compounds as the antiepileptic drug carbamazepine were not removed in any of the sampled treatment facilities and effluent concentrations in the range of influent concentrations were measured. Other compounds as bisphenol-A. the analgesic ibuprofen or the lipid regulator bezafibrate were nearly completely removed (removal rates >90%). The operation of WWTPs with SRTs suitable for nitrogen removal (SRT > 10 days at 10 degrees C) also increases the removal potential regarding selected micropollutants. No differences in treatment efficiencies were detected between the two treatment techniques. As in conventional WWTP also the removal potential of MBRs depends on the SRT. Ultrafiltration membranes do not allow any additional detention of the investigated substances due to size exclusion. However, MBRs achieve a high SRT within a compact reactor. Nonylphenolpolyehtoxylates were removed in higher extend in very low-loaded conventional WWTPs, due to variations of redox conditions, necessary for the degradation of those compounds. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4797 / 4807
页数:11
相关论文
共 26 条
[1]   BEHAVIOR OF ALKYLPHENOL POLYETHOXYLATE SURFACTANTS IN THE AQUATIC ENVIRONMENT .1. OCCURRENCE AND TRANSFORMATION IN SEWAGE-TREATMENT [J].
AHEL, M ;
GIGER, W ;
KOCH, M .
WATER RESEARCH, 1994, 28 (05) :1131-1142
[2]   OCCURRENCE AND BEHAVIOR OF LINEAR ALKYLBENZENESULFONATES, NONYLPHENOL, NONYLPHENOL MONOPHENOL AND NONYLPHENOL DIETHOXYLATES IN SEWAGE AND SEWAGE-SLUDGE TREATMENT [J].
BRUNNER, PH ;
CAPRI, S ;
MARCOMINI, A ;
GIGER, W .
WATER RESEARCH, 1988, 22 (12) :1465-1472
[3]   Carbamazepine as a possible anthropogenic marker in the aquatic environment: investigations on the behaviour of Carbamazepine in wastewater treatment and during groundwater infiltration [J].
Clara, M ;
Strenn, B ;
Kreuzinger, N .
WATER RESEARCH, 2004, 38 (04) :947-954
[4]   Adsorption of bisphenol-A, 17β-estradiole and 17α-ethinylestradiole to sewage sludge [J].
Clara, M ;
Strenn, B ;
Saracevic, E ;
Kreuzinger, N .
CHEMOSPHERE, 2004, 56 (09) :843-851
[5]   The solids retention time - a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants [J].
Clara, M ;
Kreuzinger, N ;
Strenn, B ;
Gans, O ;
Kroiss, H .
WATER RESEARCH, 2005, 39 (01) :97-106
[6]  
*DIN, 1994, 32645 DIN
[7]   Occurrence of phthalates and bisphenol A and F in the environment [J].
Fromme, H ;
Küchler, T ;
Otto, T ;
Pilz, K ;
Müller, J ;
Wenzel, A .
WATER RESEARCH, 2002, 36 (06) :1429-1438
[8]   Trace determination of macrolide and sulfonamide antimicrobials, a human sulfonamide metabolite, and trimethoprim in wastewater using liquid chromatography coupled to electrospray tandem mass spectrometry [J].
Göbel, A ;
McArdell, CS ;
Suter, MJF ;
Giger, W .
ANALYTICAL CHEMISTRY, 2004, 76 (16) :4756-4764
[9]   Tracking persistent pharmaceutical residues from municipal sewage to drinking water [J].
Heberer, T .
JOURNAL OF HYDROLOGY, 2002, 266 (3-4) :175-189
[10]   Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data [J].
Heberer, T .
TOXICOLOGY LETTERS, 2002, 131 (1-2) :5-17