Temperature-Induced Structural Transitions in the Gallium-Based MIL-53 Metal-Organic Framework

被引:56
|
作者
Boutin, Anne [1 ]
Bousquet, David [1 ]
Ortiz, Aurelie U. [2 ,3 ]
Coudert, Francois-Xavier [2 ,3 ]
Fuchs, Alain H. [2 ,3 ]
Ballandras, Anthony [4 ]
Weber, Guy [4 ]
Bezverkhyy, Igor [4 ]
Bellat, Jean-Pierre [4 ]
Ortiz, Guillaume [5 ]
Chaplais, Gerald [5 ]
Paillaud, Jean-Louis [5 ]
Marichal, Claire [5 ]
Nouali, Habiba [5 ]
Patarin, Joel [5 ]
机构
[1] Ecole Normale Super, Dept Chim, CNRS ENS UPMC, UMR 8640, F-75005 Paris, France
[2] CNRS, F-75005 Paris, France
[3] Chim ParisTech, F-75005 Paris, France
[4] Univ Bourgogne, CNRS, Lab Interdisciplinaire Carnot Bourgogne ICB, UMR 6303, F-21078 Dijon, France
[5] UHA, CNRS, Equipe Mat Porosite Controlee MPC, Inst Sci Mat Mulhouse IS2M,UMR 7361, F-68093 Mulhouse, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2013年 / 117卷 / 16期
关键词
POROUS SOLIDS; AB-INITIO; FUNCTIONALIZATION; PRESSURE; CRYSTAL; DENSITY;
D O I
10.1021/jp312179e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a structural and thermodynamic investigation of the phase behavior, of Ga(OH,F)-MIL-53, a gallium-based metal-organic framework (MOF) having the MIL-53 topology containing 0.7 wt % fluorine bonded to the metal. Despite some small structural differences, especially for the hydrated form, the overall physical chemistry behavior of Ga(OH,F)-MIL-53 is very similar to standard fluorine free Ga-MIL-53 material. A combination of in situ X-ray diffraction, in situ Fourier transform infrared spectroscopy, differential scanning calorimetry, and heat capacity measurements allowed us to establish that Ga(OH,F)-MIL-53 under vacuum (i.e., the empty material) exhibits two stable phases: a nonporous narrow-pore (np) phase favored at low temperature and a large-pore (lp) phase favored at high temperature, accompanied by a huge hysteresis effect. Structure determination of the hydrated material Ga(OH,F)-MIL-53 _np_H2O obtained after synthesis, activation, and rehydration was also performed. Density functional theory calculations show that it is not a stable structure of Ga(OH,F)-MIL-53 in the absence of adsorbed water molecules. Instead, this hydrated structure is a swollen variant of the np phase, where the flexible framework has expanded to accommodate water molecules.
引用
收藏
页码:8180 / 8188
页数:9
相关论文
共 50 条
  • [21] Adsorption and Separation of Carbon Dioxide Using MIL-53(Al) Metal-Organic Framework
    Mishra, Prashant
    Uppara, Hari Prasad
    Mandal, Bishnupada
    Gumma, Sasidhar
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (51) : 19747 - 19753
  • [22] A metal-organic framework MIL-53(Fe) containing sliver ions with antibacterial property
    Huang, Xiajuan
    Yu, Shijiang
    Lin, Wenxin
    Yao, Xin
    Zhang, Mengyi
    He, Qing
    Fu, Feiya
    Zhu, Hongliang
    Chen, Jianjun
    JOURNAL OF SOLID STATE CHEMISTRY, 2021, 302
  • [23] MIL-53 Metal-Organic Framework as a Flexible Cathode for Lithium-Oxygen Batteries
    Zhang, Yujie
    Ben Gikonyo
    Khodja, Hicham
    Gauthier, Magali
    Foy, Eddy
    Goetz, Bernard
    Serre, Christian
    Leconte, Servane Coste
    Pimenta, Vanessa
    Surble, Suzy
    MATERIALS, 2021, 14 (16)
  • [24] Electrical Regulation of CO2 Adsorption in the Metal-Organic Framework MIL-53
    Chen, Kaifei
    Singh, Ranjeet
    Guo, Jining
    Guo, Yalou
    Zavabeti, Ali
    Gu, Qinfen
    Snurr, Randall Q.
    Webley, Paul A.
    Li, Gang Kevin
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (11) : 13904 - 13913
  • [25] Rapid synthesis of metal-organic frameworks MIL-53(Cr)
    Li, Xin
    Zhang, Jin
    Shen, Wanling
    Xu, Shutao
    MATERIALS LETTERS, 2019, 255
  • [26] Pressure-induced postsynthetic cluster anion substitution in a MIL-53 topology scandium metal-organic framework
    Thom, Alexander J. R.
    Turner, Gemma F.
    Davis, Zachary H.
    Ward, Martin R.
    Pakamore, Ignas
    Hobday, Claire L.
    Allan, David R.
    Warren, Mark R.
    Leung, Wai L. W.
    Oswald, Iain D. H.
    Morris, Russell E.
    Moggach, Stephen A.
    Ashbrook, Sharon E.
    Forgan, Ross S.
    CHEMICAL SCIENCE, 2023, 14 (28) : 7716 - 7724
  • [27] Selectively Trapping Ethane from Ethylene on Metal-Organic Framework MIL-53(Al)-FA
    Peng, Junjie
    Sun, Yiwei
    Wu, Ying
    Lv, Zhenqiang
    Li, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (19) : 8290 - 8295
  • [28] Photocatalytic Dehalogenation of Aryl Halides Mediated by the Flexible Metal-Organic Framework MIL-53(Cr)
    Luo, Tian
    Jeppesen, Henrik S.
    Schoekel, Alexander
    Boenisch, Nadine
    Xu, Fei
    Zhuang, Rong
    Huang, Qiang
    Senkovska, Irena
    Bon, Volodymyr
    Heine, Thomas
    Kuc, Agnieszka
    Kaskel, Stefan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [29] Role of Prenucleation Building Units in Determining Metal-Organic Framework MIL-53(Al) Morphology
    Embrechts, Heidemarie
    Kriesten, Martin
    Ermer, Matthias
    Peukert, Wolfgang
    Hartmann, Martin
    Distaso, Monica
    CRYSTAL GROWTH & DESIGN, 2020, 20 (06) : 3641 - 3649
  • [30] Ab Initio Parametrized Force Field for the Flexible Metal-Organic Framework MIL-53(Al)
    Vanduyfhuys, L.
    Verstraelen, T.
    Vandichel, M.
    Waroquier, M.
    Van Speybroeck, V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (09) : 3217 - 3231