New preconditioners for saddle point problems

被引:144
作者
Pan, JY [1 ]
Ng, MK
Bai, ZZ
机构
[1] E China Normal Univ, Dept Math, Shanghai 200062, Peoples R China
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, State Key Lab Sci Engn Comp, Beijing 100080, Peoples R China
关键词
saddle point problem; matrix splitting; preconditioning; eigenvalue distribution;
D O I
10.1016/j.amc.2004.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present new preconditioners based on matrix splittings for the saddle point problems. The spectral property of one of the preconditioned matrix is studied in detail. Numerical examples are used to illustrate the efficiency of the new preconditioners. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 17 条
[1]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626
[2]  
BAI ZZ, 2004, SIAM J SCI COMPUT
[3]  
BAI ZZ, 2004, NUMER MATH
[4]  
BENZI M, 2004, SIAM J MATRIX ANAL A
[5]  
Betts J.T., 2001, ADV DESIGN CONTROL
[6]   Analysis of the inexact Uzawa algorithm for saddle point problems [J].
Bramble, JH ;
Pasciak, JE ;
Vassilev, AT .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) :1072-1092
[7]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[8]   INEXACT AND PRECONDITIONED UZAWA ALGORITHMS FOR SADDLE-POINT PROBLEMS [J].
ELMAN, HC ;
GOLUB, GH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (06) :1645-1661
[9]  
Gill P. E., 1981, PRACTICAL OPTIMIZATI
[10]  
GIRAULT V, 1981, FINITE ELEMENT APPRO