Mapping a molecular link between allosteric inhibition and activation of the glycine receptor

被引:30
作者
Miller, Paul S. [1 ]
Topf, Maya [2 ]
Smart, Trevor G. [1 ]
机构
[1] UCL, Dept Pharmacol, London WC1E 6BT, England
[2] Birkbeck Coll, Sch Crystallog, London WC1E 7HX, England
基金
英国惠康基金; 英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
D O I
10.1038/nsmb.1492
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cys-loop ligand-gated ion channels mediate rapid neurotransmission throughout the central nervous system. They possess agonist recognition sites and allosteric sites where modulators regulate ion channel function. Using strychnine-sensitive glycine receptors, we identified a scaffold of hydrophobic residues enabling allosteric communication between glycine-agonist binding loops A and D, and the Zn2+-inhibition site. Mutating these hydrophobic residues disrupted Zn2+ inhibition, generating novel Zn2+-activated receptors and spontaneous channel activity. Homology modeling and electrophysiology revealed that these phenomena are caused by disruption to three residues on the '-' loop face of the Zn2+-inhibition site, and to D84 and D86, on a neighboring beta 3 strand, forming a Zn2+-activation site. We provide a new view for the activation of a Cys-loop receptor where, following agonist binding, the hydrophobic core and interfacial loops reorganize in a concerted fashion to induce downstream gating.
引用
收藏
页码:1084 / 1093
页数:10
相关论文
共 57 条
[1]   Zinc coordination sphere in biochemical zinc sites [J].
Auld, DS .
BIOMETALS, 2001, 14 (3-4) :271-313
[2]   Openings of the rat recombinant α1 homomeric glycine receptor as a function of the number of agonist molecules bound [J].
Beato, M ;
Groot-Kormelink, PJ ;
Colquhoun, D ;
Sivilotti, LG .
JOURNAL OF GENERAL PHYSIOLOGY, 2002, 119 (05) :443-466
[3]  
BLOOMENTHAL AB, 1994, MOL PHARMACOL, V46, P1156
[4]   GABAA receptor β2 Tyr97 and Leu99 line the GABA-binding site -: Insights into mechanisms of agonist and antagonist actions [J].
Boileau, AJ ;
Newell, JG ;
Czajkowski, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (04) :2931-2937
[5]   Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors [J].
Brejc, K ;
van Dijk, WJ ;
Klaassen, RV ;
Schuurmans, M ;
van der Oost, J ;
Smit, AB ;
Sixma, TK .
NATURE, 2001, 411 (6835) :269-276
[6]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[7]   Chemical-scale studies on the role of a conserved aspartate in preorganizing the agonist binding site of the nicotinic acetylcholine receptor [J].
Cashin, Amanda L. ;
Torrice, Michael M. ;
McMenimen, Kathryn A. ;
Lester, Henry A. ;
Dougherty, Dennis A. .
BIOCHEMISTRY, 2007, 46 (03) :630-639
[8]   Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures [J].
Celie, PHN ;
van Rossum-Fikkert, SE ;
van Dijk, WJ ;
Brejc, K ;
Smit, AB ;
Sixma, TK .
NEURON, 2004, 41 (06) :907-914
[9]   Crystal structure of nicotinic acetylcholine receptor homolog AChBP in complex with an α-conotoxin PnIA variant [J].
Celie, PHN ;
Kasheverov, IE ;
Mordvintsev, DY ;
Hogg, RC ;
van Nierop, P ;
van Elk, R ;
van Rossum-Fikkert, SE ;
Zhmak, MN ;
Bertrand, D ;
Tsetlin, V ;
Sixma, TK ;
Smit, AB .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2005, 12 (07) :582-588
[10]   The role of loop 5 in acetylcholine receptor channel gating [J].
Chakrapani, S ;
Bailey, TD ;
Auerbach, A .
JOURNAL OF GENERAL PHYSIOLOGY, 2003, 122 (05) :521-539