Complex shapes self-assembled from single-stranded DNA tiles

被引:769
作者
Wei, Bryan [1 ,2 ]
Dai, Mingjie [2 ,3 ]
Yin, Peng [1 ,2 ]
机构
[1] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[2] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[3] Harvard Univ, Program Biophys, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
NANOSCALE SHAPES; FOLDING DNA; ORIGAMI; DESIGN; CRYSTALS; LATTICES; ARRAYS; RNA;
D O I
10.1038/nature11075
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Programmed self-assembly of strands of nucleic acid has proved highly effective for creating a wide range of structures with desired shapes(1-25). A particularly successful implementation is DNA origami, in which a long scaffold strand is folded by hundreds of short auxiliary strands into a complex shape(9,14-16,18-21,25). Modular strategies are in principle simpler and more versatile and have been used to assemble DNA(2-5,8,10-13,17,23) or RNA(7,22) tiles into periodic(3,4,7,22) and algorithmic(5) two-dimensional lattices, extended ribbons(10,12) and tubes(4,12,13), three-dimensional crystals(17), polyhedra(11) and simple finite two-dimensional shapes(7,8). But creating finite yet complex shapes from a large number of uniquely addressable tiles remains challenging. Here we solve this problem with the simplest tile form, a 'single-stranded tile' (SST) that consists of a 42-base strand of DNA composed entirely of concatenated sticky ends and that binds to four local neighbours during self-assembly(12). Although ribbons and tubes with controlled circumferences(12) have been created using the SST approach, we extend it to assemble complex two-dimensional shapes and tubes from hundreds (in some cases more than one thousand) distinct tiles. Our main design feature is a self-assembled rectangle that serves as a molecular canvas, with each of its constituent SST strands-folded into a 3 nm-by-7 nm tile and attached to four neighbouring tiles-acting as a pixel. A desired shape, drawn on the canvas, is then produced by one-pot annealing of all those strands that correspond to pixels covered by the target shape; the remaining strands are excluded. We implement the strategy with a master strand collection that corresponds to a 310-pixel canvas, and then use appropriate strand subsets to construct 107 distinct and complex two-dimensional shapes, thereby establishing SST assembly as a simple, modular and robust framework for constructing nanostructures with prescribed shapes from short synthetic DNA strands.
引用
收藏
页码:623 / +
页数:5
相关论文
共 32 条
[1]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[2]   Building programmable jigsaw puzzles with RNA [J].
Chworos, A ;
Severcan, I ;
Koyfman, AY ;
Weinkam, P ;
Oroudjev, E ;
Hansma, HG ;
Jaeger, L .
SCIENCE, 2004, 306 (5704) :2068-2072
[3]   Organization of Intracellular Reactions with Rationally Designed RNA Assemblies [J].
Delebecque, Camille J. ;
Lindner, Ariel B. ;
Silver, Pamela A. ;
Aldaye, Faisal A. .
SCIENCE, 2011, 333 (6041) :470-474
[4]   Folding DNA into Twisted and Curved Nanoscale Shapes [J].
Dietz, Hendrik ;
Douglas, Shawn M. ;
Shih, William M. .
SCIENCE, 2009, 325 (5941) :725-730
[5]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[6]   DNA DOUBLE-CROSSOVER MOLECULES [J].
FU, TJ ;
SEEMAN, NC .
BIOCHEMISTRY, 1993, 32 (13) :3211-3220
[7]   DNA Origami with Complex Curvatures in Three-Dimensional Space [J].
Han, Dongran ;
Pal, Suchetan ;
Nangreave, Jeanette ;
Deng, Zhengtao ;
Liu, Yan ;
Yan, Hao .
SCIENCE, 2011, 332 (6027) :342-346
[8]   DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy [J].
Hansma, HG ;
Laney, DE .
BIOPHYSICAL JOURNAL, 1996, 70 (04) :1933-1939
[9]   Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra [J].
He, Yu ;
Ye, Tao ;
Su, Min ;
Zhang, Chuan ;
Ribbe, Alexander E. ;
Jiang, Wen ;
Mao, Chengde .
NATURE, 2008, 452 (7184) :198-U41
[10]   DNA tile based self-assembly: Building complex nanoarchitectures [J].
Lin, Chenxiang ;
Liu, Yan ;
Rinker, Sherri ;
Yan, Hao .
CHEMPHYSCHEM, 2006, 7 (08) :1641-1647