Convergence in Variation and Rate of Approximation for Nonlinear Integral Operators of Convolution Type

被引:33
作者
Angeloni, Laura [1 ]
Vinti, Gianluca [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
Nonlinear integral operators; multidimensional variation; order of approximation; Lipschitz classes;
D O I
10.1007/s00025-006-0208-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain estimates, convergence results and rate of approximation for functions belonging to BV - spaces (spaces of functions with bounded variation) by means of nonlinear convolution integral operators. We treat both the periodic and the non-periodic case using, respectively, the classical Jordan variation and the multidimensional variation in the sense of Tonelli.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 28 条
  • [1] Angeloni L., 2004, INT J MATH SCI, V3, P94
  • [2] Angeloni L, 2005, DIFFER INTEGRAL EQU, V18, P855
  • [3] [Anonymous], 1936, ANN SCUOLA NORM-SCI
  • [4] Barbieri F., 1983, ATTI SEMIN MAT FIS, V32, P308
  • [5] Bardaro C., 2003, ANAL MUNICH, V23, P299
  • [6] Bardaro C., 1979, ATTI SEMIN MAT FIS, V28, P373
  • [7] Bardaro C, 2001, FUNCT APPROX COMMENT, V29, P17, DOI DOI 10.7169/FACM/1538186713
  • [8] Bardaro C., 2003, DEGRUYTER SERIES NON, V9
  • [9] Butzer P. L., 1971, Reviews in Group Representation Theory, Part A (Pure and Applied Mathematics Series, VI
  • [10] Butzer P.L., 1990, NOTE MAT, V10, P173