RNA Signal Amplifier Circuit with Integrated Fluorescence Output

被引:18
作者
Akter, Farhima [1 ]
Yokobayashi, Yohei [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Okinawa Inst Sci & Technol Grad Univ, Nucle Acid Chem & Engn Unit, Onna Son, Okinawa 9040495, Japan
来源
ACS SYNTHETIC BIOLOGY | 2015年 / 4卷 / 05期
基金
美国国家卫生研究院;
关键词
RNA engineering; RNA circuit; Spinach aptamer; signal amplification; DI-GMP; PROTEIN; MIMICS;
D O I
10.1021/sb500314r
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We designed an in vitro signal amplification circuit that takes a short RNA input that catalytically activates the Spinach RNA aptamer to produce a fluorescent output The circuit consists of three RNA strands: an internally blocked Spinach aptamer, a fuel strand, and an input strand (catalyst), as well as the Spinach aptamer ligand 3,5-difluoro-4-hydroxylbenzylidene imidazolinone (DFHBI). The input strand initially displaces the internal inhibitory strand to activate the fluorescent aptamer while exposing a toehold to which the fuel strand can bind to further displace and recycle the input strand. Under a favorable condition, one input strand was able to activate up to five molecules of the internally blocked Spinach aptamer in 185 min at 30 degrees C. The simple RNA circuit reported here serves as a model for catalytic activation of arbitrary RNA effectors by chemical triggers.
引用
收藏
页码:655 / 658
页数:4
相关论文
共 11 条
  • [1] A Spinach molecular beacon triggered by strand displacement
    Bhadra, Sanchita
    Ellington, Andrew D.
    [J]. RNA, 2014, 20 (08) : 1183 - 1194
  • [2] Design and application of cotranscriptional non-enzymatic RNA circuits and signal transducers
    Bhadra, Sanchita
    Ellington, Andrew D.
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (07) : e58
  • [3] Conditional Dicer Substrate Formation via Shape and Sequence Transduction with Small Conditional RNAs
    Hochrein, Lisa M.
    Schwarzkopf, Maayan
    Shahgholi, Mona
    Yin, Peng
    Pierce, Niles A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (46) : 17322 - 17330
  • [4] Huang H, 2014, NAT CHEM BIOL, V10, P686, DOI [10.1038/NCHEMBIO.1561, 10.1038/nchembio.1561]
  • [5] RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messengers Cyclic di-GMP and Cyclic AMP-GMP
    Kellenberger, Colleen A.
    Wilson, Stephen C.
    Sales-Lee, Jade
    Hammond, Ming C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (13) : 4906 - 4909
  • [6] Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods
    Li, Bingling
    Ellington, Andrew D.
    Chen, Xi
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 (16) : e110
  • [7] Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy
    Nakayama, Shizuka
    Luo, Yiling
    Zhou, Jie
    Dayie, T. Kwaku
    Sintim, Herman O.
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (72) : 9059 - 9061
  • [8] Fluorescence Imaging of Cellular Metabolites with RNA
    Paige, Jeremy S.
    Nguyen-Duc, Thinh
    Song, Wenjiao
    Jaffrey, Samie R.
    [J]. SCIENCE, 2012, 335 (6073) : 1194 - 1194
  • [9] RNA Mimics of Green Fluorescent Protein
    Paige, Jeremy S.
    Wu, Karen Y.
    Jaffrey, Samie R.
    [J]. SCIENCE, 2011, 333 (6042) : 642 - 646
  • [10] Song WJ, 2013, NAT METHODS, V10, P873, DOI [10.1038/NMETH.2568, 10.1038/nmeth.2568]