Leader-follower tracking control with guaranteed consensus performance for interconnected systems with linear dynamic uncertain coupling

被引:18
作者
Cheng, Yi [1 ]
Ugrinovskii, V. [1 ]
机构
[1] Univ New S Wales, Australian Def Force Acad, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会;
关键词
large-scale systems; robust distributed control; leader-follower tracking control; consensus control; integral quadratic constraints; MULTIAGENT SYSTEMS; ROBUST-CONTROL; STATE-FEEDBACK; SCALE SYSTEMS; SYNCHRONIZATION; NETWORKS; DESIGN;
D O I
10.1080/00207179.2015.1013059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the leader-follower tracking control problem for linear interconnected systems with undirected topology and linear dynamic coupling. Interactions between the systems are treated as linear dynamic uncertainty and are described in terms of integral quadratic constraints (IQCs). A consensus-type tracking control protocol is proposed for each system based on its state relative to its neighbours. In addition, a selected set of subsystems is used to control their relative states with respect to the leader. Two methods are proposed for the design of this control protocol. One method uses a coordinate transformation to recast the protocol design problem as a decentralised robust control problem for an auxiliary interconnected large-scale system. Another method is direct; it does not employ coordinate transformation, rather it also allows for more general linear uncertain interactions. Using these methods, sufficient conditions are obtained which guarantee that the system tracks the leader. These conditions guarantee a suboptimal bound on the system consensus and tracking performance. The proposed methods are compared using a simulation example, and their effectiveness is discussed. Also, algorithms are proposed for computing suboptimal controllers.
引用
收藏
页码:1663 / 1677
页数:15
相关论文
共 32 条
[1]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[2]   Coordinated target assignment and intercept for unmanned air vehicles [J].
Beard, RW ;
McLain, TW ;
Goodrich, MA ;
Anderson, EP .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2002, 18 (06) :911-922
[3]   Distributed LQR design for identical dynamically decoupled systems [J].
Borrelli, Francesco ;
Keviczky, Tamas .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (08) :1901-1912
[4]  
Cheng Y, 2013, 2013 3RD AUSTRALIAN CONTROL CONFERENCE (AUCC), P375, DOI 10.1109/AUCC.2013.6697302
[5]  
Cheng Y, 2013, P AMER CONTR CONF, P2625
[6]   Coordination and geometric optimization via distributed dynamical systems [J].
Cortés, J ;
Bullo, F .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 44 (05) :1543-1574
[7]   Parsimonious event-triggered distributed control: A Zeno free approach [J].
De Persis, C. ;
Sailer, R. ;
Wirth, F. .
AUTOMATICA, 2013, 49 (07) :2116-2124
[8]   Decentralized estimation of Laplacian eigenvalues in multi-agent systems [J].
Franceschelli, Mauro ;
Gasparri, Andrea ;
Giua, Alessandro ;
Seatzu, Carla .
AUTOMATICA, 2013, 49 (04) :1031-1036
[9]   Output synchronization for heterogeneous networks of non-introspective agents [J].
Grip, Havard Fjaer ;
Yang, Tao ;
Saberi, Ali ;
Stoorvogel, Anton A. .
AUTOMATICA, 2012, 48 (10) :2444-2453
[10]   Tracking control for multi-agent consensus with an active leader and variable topology [J].
Hong, Yiguang ;
Hu, Jiangping ;
Gao, Linxin .
AUTOMATICA, 2006, 42 (07) :1177-1182