Projections of Gibbs measures on self-conformal sets

被引:4
作者
Bruce, Catherine [1 ]
Jin, Xiong [1 ]
机构
[1] Univ Manchester, Sch Math, Oxford Rd, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Hausdorff dimension; Gibbs measure; self-conformal sets; projections; CP-chain; group extension;
D O I
10.1088/1361-6544/aaec9f
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for Gibbs measures on self-conformal sets in R-d (d >= 2) satisfying certain minimal assumptions, without requiring any separation condition, the Hausdorff dimension of orthogonal projections to k-dimensional subspaces is the same and is equal to the maximum possible value in all directions. As a corollary we show that Falconer's distance set conjecture holds for this class of self-conformal sets satisfying the open set condition.
引用
收藏
页码:603 / 621
页数:19
相关论文
共 25 条
[1]  
[Anonymous], 2014, FRACTAL GEOMETRY MAT
[2]   The scenery flow for hyperbolic Julia sets [J].
Bedford, T ;
Fisher, AM ;
Urbanski, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :467-492
[3]   Ratio geometry, rigidity and the scenery process for hyperbolic Cantor sets [J].
Bedford, T ;
Fisher, AM .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :531-564
[4]  
Bowen R., 1979, PUBL MATH-PARIS, V50, P259, DOI [10.1007/BF02684767, DOI 10.1007/BF02684767]
[5]  
BOWEN R., 1975, Lecture Notes in Mathematics, V470
[6]  
Falconer K, 2015, FRACTAL GEOMETRY STO, VV, P3
[7]   Exact dimensionality and projections of random self-similar measures and sets [J].
Falconer, Kenneth J. ;
Jin, Xiong .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 :388-412
[8]   Relationships between different dimensions of a measure [J].
Fan, AH ;
Lau, KS ;
Rao, H .
MONATSHEFTE FUR MATHEMATIK, 2002, 135 (03) :191-201
[9]   Dimension Theory of Iterated Function Systems [J].
Feng, De-Jun ;
Hu, Huyi .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) :1435-1500
[10]   Micromeasure distributions and applications for conformally generated fractals [J].
Fraser, Jonathan M. ;
Pollicott, Mark .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 159 (03) :547-566