A gravity-based three-dimensional compass in the mouse brain

被引:28
作者
Angelaki, Dora E. [1 ,2 ,3 ]
Ng, Julia [3 ]
Abrego, Amada M. [3 ]
Cham, Henry X. [3 ]
Asprodini, Eftihia K. [4 ]
Dickman, J. David [3 ,5 ]
Laurens, Jean [3 ]
机构
[1] NYU, Ctr Neural Sci, New York, NY 10003 USA
[2] NYU, Tandon Sch Engn, New York, NY 10003 USA
[3] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA
[4] Univ Thessaly, Fac Med, Sch Hlth Sci, Dept Pharmacol, Larisa, Greece
[5] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
关键词
HEAD-DIRECTION SIGNAL; REPRESENTATION; ORIENTATION; ANTERODORSAL; LOCOMOTION; MOVEMENT; ORIGINS; CORTEX; CELLS; MODEL;
D O I
10.1038/s41467-020-15566-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gravity sensing provides a robust verticality signal for three-dimensional navigation. Head direction cells in the mammalian limbic system implement an allocentric neuronal compass. Here we show that head-direction cells in the rodent thalamus, retrosplenial cortex and cingulum fiber bundle are tuned to conjunctive combinations of azimuth and tilt, i.e. pitch or roll. Pitch and roll orientation tuning is anchored to gravity and independent of visual landmarks. When the head tilts, azimuth tuning is affixed to the head-horizontal plane, but also uses gravity to remain anchored to the allocentric bearings in the earth-horizontal plane. Collectively, these results demonstrate that a three-dimensional, gravity-based, neural compass is likely a ubiquitous property of mammalian species, including ground-dwelling animals.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Egocentric boundary vector tuning of the retrosplenial cortex [J].
Alexander, Andrew S. ;
Carstensen, Lucas C. ;
Hinman, James R. ;
Raudies, Florian ;
Chapman, G. William ;
Hasselmo, Michael E. .
SCIENCE ADVANCES, 2020, 6 (08)
[2]  
[Anonymous], 2018, BRAIN NEUROSCI ADV, DOI DOI 10.1177/2398212818757098
[3]   Morphology captures diet and locomotor types in rodents [J].
Arregoitia, Luis D. Verde ;
Fisher, Diana O. ;
Schweizer, Manuel .
ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (01)
[4]   Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals [J].
Barry, Jeremy M. .
FRONTIERS IN NEUROSCIENCE, 2015, 9
[5]   Invertebrate solutions for sensing gravity [J].
Bender, John A. ;
Frye, Mark A. .
CURRENT BIOLOGY, 2009, 19 (05) :R186-R190
[6]   The cingulum bundle: Anatomy, function, and dysfunction [J].
Bubb, Emma J. ;
Metzler-Baddeley, Claudia ;
Aggleton, John P. .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2018, 92 :104-127
[7]   Degradation of head direction cell activity during inverted locomotion [J].
Calton, JL ;
Taube, JS .
JOURNAL OF NEUROSCIENCE, 2005, 25 (09) :2420-2428
[8]   The intrinsic attractor manifold and population dynamics of a canonical cognitive circuit across waking and sleep [J].
Chaudhuri, Rishidev ;
Gercek, Berk ;
Pandey, Biraj ;
Peyrache, Adrien ;
Fiete, Ila .
NATURE NEUROSCIENCE, 2019, 22 (09) :1512-+
[9]   The Retrosplenial-Parietal Network and Reference Frame Coordination for Spatial Navigation [J].
Clark, Benjamin J. ;
Simmons, Christine M. ;
Berkowitz, Laura E. ;
Wilber, Aaron A. .
BEHAVIORAL NEUROSCIENCE, 2018, 132 (05) :416-429
[10]   Vestibular and attractor network basis of the head direction cell signal in subcortical circuits [J].
Clark, Benjamin J. ;
Taube, Jeffrey S. .
FRONTIERS IN NEURAL CIRCUITS, 2012, 6