Product graphs, sum-product graphs and sum-product estimates over finite rings

被引:5
作者
Le Anh Vinh [1 ]
机构
[1] Vietnam Natl Univ, Univ Educ, Hanoi 100000, Vietnam
关键词
Bilinear equations; product graphs; sum-product graphs; sum-product estimates; FIELDS;
D O I
10.1515/forum-2012-0177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the product and sum-product graphs defined over the residue ring mod m. We show that all (or almost all) systems of dot-product equations are solvable in any sufficiently large subset epsilon subset of Z(m)(d). We also prove some results on sum-product estimates in Z(m).
引用
收藏
页码:1639 / 1655
页数:17
相关论文
共 14 条
[1]  
Alon Noga, 2004, The Probabilistic Method
[2]  
[Anonymous], PREPRINT
[3]   Mordell's exponential sum estimate revisited [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :477-499
[4]   Pinned distance sets, k-simplices, Wolff's exponent in finite fields and sum-product estimates [J].
Chapman, Jeremy ;
Erdogan, M. Burak ;
Hart, Derrick ;
Iosevich, Alex ;
Koh, Doowon .
MATHEMATISCHE ZEITSCHRIFT, 2012, 271 (1-2) :63-93
[5]  
Covert D., 2011, PREPRINT
[6]   The sum-product estimate for large subsets of prime fields [J].
Garaev, M. Z. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (08) :2735-2739
[7]  
Glibichuk AA, 2007, CRM PROC & LECT NOTE, V43, P279
[8]  
Glibichuk A. A., PREPRINT
[9]  
Hart D, 2008, CONTEMP MATH, V464, P129
[10]  
Krivelevich M, 2006, BOLYAI MATH STUD, P199