The degenerated second main theorem and Schmidt's subspace theorem

被引:26
作者
Chen ZhiHua [1 ]
Ru Min [2 ]
Yan QiMing [1 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Univ Houston, Dept Math, Houston, TX 77004 USA
基金
中国国家自然科学基金;
关键词
Nevanlinna theory; holomorphic curve; Second Main Theorem; Diophantine approximation; Schmidt's Subspace Theorem; HOLOMORPHIC-CURVES; INEQUALITIES; VARIETIES; FORM;
D O I
10.1007/s11425-012-4378-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a Second Main Theorem for an algebraically degenerate holomorphic curve f: a", -> a"(TM) (n) (a",) intersecting hypersurfaces in general position. The related Diophantine problems are also considered.
引用
收藏
页码:1367 / 1380
页数:14
相关论文
共 15 条
[1]  
Cartan H., 1933, Mathematica, V7, P80
[2]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[3]   On a general Thue's equation (vol 128, pg 1057, 2006) [J].
Corvaja, Pietro ;
Zannier, Umberto .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (04) :1057-1066
[4]  
Eremenko A., 1992, ST PETERSB MATH J, V3, P109
[5]   A generalization of the Subspace Theorem with polynomials of higher degree [J].
Evertse, Jan-Hendrik ;
Ferretti, Roberto G. .
DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 :175-+
[6]  
Evertse JH, 2002, INT MATH RES NOTICES, V2002, P1295
[7]  
Gyory K, 1998, ACTA ARITH, V86, P227
[8]  
Nochka E. I., 1983, Soviet Math. Dokl., V27, P377
[9]   On a general form of the Second main Theorem [J].
Ru, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (12) :5093-5105
[10]   A defect relation for holomorphic curves intersecting hypersurfaces [J].
Ru, M .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (01) :215-226