Variational Solution of Stochastic Schrodinger Equations With Power-Type Nonlinearity

被引:8
作者
Keller, Diana [1 ]
Lisei, Hannelore [2 ]
机构
[1] Univ Halle Wittenberg, Inst Math, Fac Nat Sci 2, D-06099 Halle, Saale, Germany
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
关键词
Stochastic nonlinear Schrodinger equation; Power-type nonlinearity; Multiplicative noise; Variational solution; Galerkin method; 60H15; 35Q55; MULTIPLICATIVE NOISE; CLASSICAL-SOLUTIONS; CAUCHY-PROBLEM; DRIVEN;
D O I
10.1080/07362994.2015.1029133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a Schrodinger problem with multiplicative Gaussian noise term and power-type nonlinearity on a bounded one-dimensional domain. In order to prove the existence and uniqueness of the variational solution, a further process will be introduced which allows to transform the stochastic nonlinear Schrodinger problem into a pathwise one. Galerkin approximations and compact embedding results are used.
引用
收藏
页码:653 / 672
页数:20
相关论文
共 36 条
[21]  
Ito K., 2002, Series on Advances in Mathematics for Applied Sciences, V61
[22]   Existence and uniqueness of global solutions of on R2 [J].
Jiu Q. ;
Liu J. .
Acta Mathematicae Applicatae Sinica, 1997, 13 (4) :414-424
[23]  
Ladyenskaja O. A., 1968, Translations of Mathematical Monographs, V23
[24]   Stabilization of solitons of the multidimensional nonlinear Schrodinger equation:: matter-wave breathers [J].
Montesinos, GD ;
Pérez-García, VM ;
Torres, PJ .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 191 (3-4) :193-210
[25]   Basic properties of nonlinear stochastic Schrodinger equations driven by Brownian motions [J].
Mora, Carlos M. ;
Rebolledo, Rolando .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (02) :591-619
[26]   Regularity of solutions to linear stochastic Schrodinger equations [J].
Mora, Carlos M. ;
Rebolledo, Rolando .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2007, 10 (02) :237-259
[27]   TIME-DEPENDENT NON-LINEAR SCHRODINGER EQUATIONS [J].
PECHER, H ;
WAHL, WV .
MANUSCRIPTA MATHEMATICA, 1979, 27 (02) :125-157
[28]   A note on stochastic Schrodinger equations with fractional multiplicative noise [J].
Pinaud, Olivier .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (04) :1467-1491
[29]   LOCAL EXACT CONTROLLABILITY AND STABILIZABILITY OF THE NONLINEAR SCHRODINGER EQUATION ON A BOUNDED INTERVAL [J].
Rosier, Lionel ;
Zhang, Bing-Yu .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (02) :972-992
[30]   The nonlinear Schrodinger equation with combined power-type nonlinearities [J].
Tao, Terence ;
Visan, Monica ;
Zhang, Xiaoyi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1281-1343