Variational Solution of Stochastic Schrodinger Equations With Power-Type Nonlinearity

被引:8
作者
Keller, Diana [1 ]
Lisei, Hannelore [2 ]
机构
[1] Univ Halle Wittenberg, Inst Math, Fac Nat Sci 2, D-06099 Halle, Saale, Germany
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
关键词
Stochastic nonlinear Schrodinger equation; Power-type nonlinearity; Multiplicative noise; Variational solution; Galerkin method; 60H15; 35Q55; MULTIPLICATIVE NOISE; CLASSICAL-SOLUTIONS; CAUCHY-PROBLEM; DRIVEN;
D O I
10.1080/07362994.2015.1029133
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a Schrodinger problem with multiplicative Gaussian noise term and power-type nonlinearity on a bounded one-dimensional domain. In order to prove the existence and uniqueness of the variational solution, a further process will be introduced which allows to transform the stochastic nonlinear Schrodinger problem into a pathwise one. Galerkin approximations and compact embedding results are used.
引用
收藏
页码:653 / 672
页数:20
相关论文
共 36 条
[1]   Stochastic Nonlinear Schrodinger Equations with Linear Multiplicative Noise: Rescaling Approach [J].
Barbu, Viorel ;
Roeckner, Michael ;
Zhang, Deng .
JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (03) :383-409
[2]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[3]   On a type of stochastic differential equations driven by countably many Brownian motions [J].
Cao, GL ;
He, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 203 (01) :262-285
[4]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[6]  
Cazenave T., 2003, Courant Lect. Notes Math., V10, pxiii
[7]   Higher-order nonlinear Schrodinger equation with derivative non-Kerr nonlinear terms: A model for sub-10-fs-pulse propagation [J].
Choudhuri, Amitava ;
Porsezian, K. .
PHYSICAL REVIEW A, 2013, 88 (03)
[8]   A stochastic nonlinear Schrodinger equation with multiplicative noise [J].
de Bouard, A ;
Debussche, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 205 (01) :161-181
[9]   The stochastic nonlinear Schrodinger equation in H 1 [J].
de Bouard, A ;
Debussche, A .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2003, 21 (01) :97-126
[10]   The nonlinear Schrodinger equation with white noise dispersion [J].
de Bouard, Anne ;
Debussche, Arnaud .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) :1300-1321