Beyond first-order finite element schemes in micromagnetics

被引:17
作者
Kritsikis, E. [1 ]
Vaysset, A. [4 ]
Buda-Prejbeanu, L. D. [4 ]
Alouges, F. [5 ,6 ]
Toussaint, J. -C. [2 ,3 ]
机构
[1] Univ Paris 13, CNRS, Lab Anal Geometr & Applicat, UMR 7539, F-93430 Villetaneuse, France
[2] CNRS, Inst Neel, F-38042 Grenoble, France
[3] Univ Grenoble 1, F-38042 Grenoble, France
[4] UJF Grenoble 1, Grenoble INP, SPINTEC, INAC,UMR,CEA,CNRS, F-38054 Grenoble, France
[5] Ecole Polytech, CNRS, CMAP, F-91128 Palaiseau, France
[6] Ecole Polytech, F-91128 Palaiseau, France
关键词
Landau-Lifshitz equation; Finite elements; Micromagnetism; Magnetization dynamics; Magnetostatic field; Non-uniform fast Fourier transform; Spintronics; Spin-torque oscillator; LANDAU-LIFSHITZ EQUATIONS; ALGORITHM; DRIVEN; CONVERGENCE;
D O I
10.1016/j.jcp.2013.08.035
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Magnetization dynamics in ferromagnetic materials is ruled by the Landau-Lifshitz-Gilbert equation (LLG). Reliable schemes must conserve the magnetization norm, which is a nonconvex constraint, and be energy-decreasing unless there is pumping. Some of the authors previously devised a convergent finite element scheme that, by choice of an appropriate test space - the tangent plane to the magnetization - reduces to a linear problem at each time step. The scheme was however first-order in time. We claim it is not an intrinsic limitation, and the same approach can lead to efficient micromagnetic simulation. We show how the scheme order can be increased, and the nonlocal (magnetostatic) interactions be tackled in logarithmic time, by the fast multipole method or the non-uniform fast Fourier transform. Our implementation is called feeLLGood. A test-case of the National Institute of Standards and Technology is presented, then another one relevant to spin-transfer effects (the spin-torque oscillator). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 23 条
[1]   ON GLOBAL WEAK SOLUTIONS FOR LANDAU-LIFSHITZ EQUATIONS - EXISTENCE AND NONUNIQUENESS [J].
ALOUGES, F ;
SOYEUR, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (11) :1071-1084
[2]   Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism [J].
Alouges, F ;
Jaisson, P .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :299-316
[3]   A new algorithm for computing liquid crystal stable configurations: The harmonic mapping case [J].
Alouges, F .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1708-1726
[4]   A convergent finite element approximation for Landau-Lifschitz-Gilbert equation [J].
Alouges, Francois ;
Kritsikis, Evaggelos ;
Toussaint, Jean-Christophe .
PHYSICA B-CONDENSED MATTER, 2012, 407 (09) :1345-1349
[5]   A NEW FINITE ELEMENT SCHEME FOR LANDAU-LIFCHITZ EQUATIONS [J].
Alouges, Francois .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02) :187-196
[6]   Stability and convergence of finite-element approximation schemes for harmonic maps [J].
Bartels, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (01) :220-238
[7]  
Braess D., 2001, FINITE ELEMENTS
[8]  
Brown W. F., 1963, Micromagnetics
[9]   Modeling of the perpendicular polarizer-planar free layer spin torque oscillator: Micromagnetic simulations [J].
Firastrau, I. ;
Gusakova, D. ;
Houssameddine, D. ;
Ebels, U. ;
Cyrille, M. -C. ;
Delaet, B. ;
Dieny, B. ;
Redon, O. ;
Toussaint, J. -Ch. ;
Buda-Prejbeanu, L. D. .
PHYSICAL REVIEW B, 2008, 78 (02)
[10]  
Goldenits P., 2011, P APPL MATH MECH, V11, P775