Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids

被引:92
作者
Liu, Yaw-Jen
Cheng, Chao-Sheng
Lai, Szu-Ming
Hsu, Ming-Pin
Chen, Ching-San
Lyu, Ping-Chiang [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Life Sci, Hsinchu 300, Taiwan
[2] Natl Tsing Hua Univ, Inst Bioinformat & Struct Biol, Hsinchu 300, Taiwan
[3] Acad Sinica, Inst Bot, Taipei, Taiwan
[4] Natl Taiwan Univ, Inst Microbiol & Biochem, Taipei 10764, Taiwan
关键词
plant defensin; VrD1; CS alpha beta motif; insecticidal activity; alpha-amylase inhibitory activity;
D O I
10.1002/prot.20962
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vigna radiata plant defensin 1 (VrD1) is the first reported plant defensin exhibiting insecticidal activity. We report herein the nuclear magnetic resonance solution structure of VrD1 and the implication on its insecticidal activity. The root-mean-square deviation values are 0.51 +/- 0.35 and 1.23 +/- 0.29 angstrom for backbone and all heavy atoms, respectively. The VrD1 structure comprises a triple-stranded antiparallel beta-sheet, an alpha-helix, and a 3(10) helix stabilized by four disulfide bonds, forming a typical cysteine-stabilized alpha beta motif. Among plant defensins of known structure, VrD1 is the first to contain a 3(10) helix. Glu(26) is highly conserved among defensins; VrD1 contains an arginine at this position, which may induce a shift in the orientation of Trp(10), thereby promoting the formation of this 3(10) helix. Moreover, VrD1 inhibits Tenebrio molitor alpha-amylase. alpha-Amylase has an essential role in the digestion of plant starch in the insect gut, and expression of the common bean alpha-amylase inhibitor 1 in transgenic pea imparts complete resistance against bruchids. These results imply that VrD1 insecticidal activity has its basis in the inhibition of a polysaccharide hydrolase. Sequence and structural comparisons between two groups of plant defensins having different specificity toward insect alpha-amylase reveal that the loop between beta 2 and beta 3 is the probable binding site for the alpha-amylase. Computational docking experiments were used to study VrD1-alpha-amylase interactions, and these results provide information that may be used to improve the insecticidal activity of VrD1.
引用
收藏
页码:777 / 786
页数:10
相关论文
共 54 条
[1]  
*ACC INC, 2002, DISCOVERYST
[2]   Characterization of two novel defense peptides from pea (Pisum sativum) seeds [J].
Almeida, MS ;
Cabral, KMS ;
Zingali, RB ;
Kurtenbach, E .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2000, 378 (02) :278-286
[3]   Solution structure of Pisum sativum defensin 1 by high resolution NMR:: Plant defensins, identical backbone with different mechanisms of action [J].
Almeida, MS ;
Cabral, KMS ;
Kurtenbach, E ;
Almeida, FCL ;
Valente, AP .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 315 (04) :749-757
[4]   A NEW FAMILY OF SMALL (5 KDA) PROTEIN INHIBITORS OF INSECT ALPHA-AMYLASES FROM SEEDS OR SORGHUM (SORGHUM-BICOLOR (L) MOENCH) HAVE SEQUENCE HOMOLOGIES WITH WHEAT GAMMA-PUROTHIONINS [J].
BLOCH, C ;
RICHARDSON, M .
FEBS LETTERS, 1991, 279 (01) :101-104
[5]   THE REFINED 2.0 A X-RAY CRYSTAL-STRUCTURE OF THE COMPLEX FORMED BETWEEN BOVINE BETA-TRYPSIN AND CMTI-I, A TRYPSIN-INHIBITOR FROM SQUASH SEEDS (CUCURBITA-MAXIMA) - TOPOLOGICAL SIMILARITY OF THE SQUASH SEED INHIBITORS WITH THE CARBOXYPEPTIDASE A INHIBITOR FROM POTATOES [J].
BODE, W ;
GREYLING, HJ ;
HUBER, R ;
OTLEWSKI, J ;
WILUSZ, T .
FEBS LETTERS, 1989, 242 (02) :285-292
[6]   3-DIMENSIONAL STRUCTURE OF NATURAL CHARYBDOTOXIN IN AQUEOUS-SOLUTION BY H-1-NMR - CHARYBDOTOXIN POSSESSES A STRUCTURAL MOTIF FOUND IN OTHER SCORPION TOXINS [J].
BONTEMS, F ;
ROUMESTAND, C ;
BOYOT, P ;
GILQUIN, B ;
DOLJANSKY, Y ;
MENEZ, A ;
TOMA, F .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 196 (01) :19-28
[7]  
BROEKAERT WF, 1995, PLANT PHYSIOL, V108, P1353, DOI [10.1016/j.coelec.2021.100721, 10.1016/j.chiabu.2021.105188]
[8]   SOLUTION STRUCTURE OF GAMMA-1-H AND GAMMA-1-P THIONINS FROM BARLEY AND WHEAT ENDOSPERM DETERMINED BY H-1-NMR - A STRUCTURAL MOTIF COMMON TO TOXIC ARTHROPOD PROTEINS [J].
BRUIX, M ;
JIMENEZ, MA ;
SANTORO, J ;
GONZALEZ, C ;
COLILLA, FJ ;
MENDEZ, E ;
RICO, M .
BIOCHEMISTRY, 1993, 32 (02) :715-724
[9]  
BRUNGER AT, 1992, XPLOR SOFTWARE MANUA
[10]   Solution structure of the thermostable sweet-tasting protein brazzein [J].
Caldwell, JE ;
Abildgaard, F ;
Dzakula, Z ;
Ming, D ;
Hellekant, G ;
Markley, JL .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (06) :427-431