Quasivarieties generated by partially commutative groups

被引:3
作者
Timoshenko, E. I. [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
quasivariety; prevariety; partially commutative group; metabelian group; graph; CENTRALIZER DIMENSION;
D O I
10.1134/S0037446613040125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a partially commutative metabelian group is a subgroup in a direct product of torsion-free abelian groups and metabelian products of torsion-free abelian groups. From this we deduce that all partially commutative metabelian (nonabelian) groups generate the same quasivariety and prevariety. On the contrary, there exists an infinite chain of different quasivarieties generated by partially commutative groups with defining graphs of diameter 2.
引用
收藏
页码:722 / 730
页数:9
相关论文
共 13 条
[1]   Algebraic geometry over groups I. Algebraic sets and ideal theory [J].
Baumslag, G ;
Myasnikov, A ;
Remeslennikov, V .
JOURNAL OF ALGEBRA, 1999, 219 (01) :16-79
[2]  
Duchamp G., 1993, INT J ALGEBRA COMPUT, V3, P15
[3]  
Duncan AJ, 2006, SIB ELECTRON MATH RE, V3, P197
[4]   Centraliser dimension of partially commutative groups [J].
Duncan, Andrew J. ;
Kazachkov, Ilya V. ;
Remeslennikov, Vladimir N. .
GEOMETRIAE DEDICATA, 2006, 120 (01) :73-97
[5]  
Esyp ES, 2005, CONTEMP MATH, V378, P319
[6]   Partially commutative metabelian groups: centralizers and elementary equivalence [J].
Gupta, Ch. K. ;
Timoshenko, E. I. .
ALGEBRA AND LOGIC, 2009, 48 (03) :173-192
[7]  
Myasnikov A, 2004, J GROUP THEORY, V7, P135
[8]  
Remeslennikov V, 2004, ALGEBR COLLOQ, V11, P191
[9]  
Remeslennikov V. N., 1969, ALGEBR LOG+, V8, P39, DOI DOI 10.1007/BF02219822
[10]  
REMESLENNIKOV VN, 2004, ALGEBR LOG+, V43, P190