Distinct transmitter release properties determine differences in short-term plasticity at functional and silent synapses

被引:35
作者
Cabezas, C [1 ]
Buño, W [1 ]
机构
[1] CSIC, Inst Cajal, E-28002 Madrid, Spain
关键词
D O I
10.1152/jn.00739.2005
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 mu M) and thapsigargin (1 mu M) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.
引用
收藏
页码:3024 / 3034
页数:11
相关论文
共 68 条
[1]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[2]   Silent synapses in neural plasticity: Current evidence [J].
Atwood, HL ;
Wojtowicz, JM .
LEARNING & MEMORY, 1999, 6 (06) :542-571
[3]   Quantal currents at single-site central synapses [J].
Auger, C ;
Marty, A .
JOURNAL OF PHYSIOLOGY-LONDON, 2000, 526 (01) :3-11
[4]   Calcium regulates exocytosis at the level of single vesicles [J].
Becherer, U ;
Moser, T ;
Stühmer, W ;
Oheim, M .
NATURE NEUROSCIENCE, 2003, 6 (08) :846-853
[5]   HIPPOCAMPAL LONG-TERM DEPRESSION - ARACHIDONIC-ACID AS A POTENTIAL RETROGRADE MESSENGER [J].
BOLSHAKOV, VY ;
SIEGELBAUM, SA .
NEUROPHARMACOLOGY, 1995, 34 (11) :1581-1587
[6]   Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus [J].
Bolshakov, VY ;
Golan, H ;
Kandel, ER ;
Siegelbaum, SA .
NEURON, 1997, 19 (03) :635-651
[7]   Assessing the role of calcium-induced calcium release in short-term presynaptic plasticity at excitatory central synapses [J].
Carter, AG ;
Vogt, KE ;
Foster, KA ;
Regehr, WG .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :21-28
[8]   Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses [J].
Chen, G ;
Harata, NC ;
Tsien, RW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (04) :1063-1068
[9]   Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses' [J].
Choi, S ;
Klingauf, J ;
Tsien, RW .
NATURE NEUROSCIENCE, 2000, 3 (04) :330-336
[10]  
CLEMENTI E, 1992, J BIOL CHEM, V267, P2164