Few-Shot Action Recognition with Hierarchical Matching and Contrastive Learning

被引:25
|
作者
Zheng, Sipeng [1 ]
Chen, Shizhe [2 ]
Jin, Qin [1 ]
机构
[1] Renmin Univ China, Beijing, Peoples R China
[2] INRIA, Paris, France
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Few-shot learning; Action recognition; Contrastive learning;
D O I
10.1007/978-3-031-19772-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot action recognition aims to recognize actions in test videos based on limited annotated data of target action classes. The dominant approaches project videos into a metric space and classify videos via nearest neighboring. They mainly measure video similarities using global or temporal alignment alone, while an optimum matching should be multi-level. However, the complexity of learning coarse-to-fine matching quickly rises as we focus on finer-grained visual cues, and the lack of detailed local supervision is another challenge. In this work, we propose a hierarchical matching model to support comprehensive similarity measure at global, temporal and spatial levels via a zoom-in matching module. We further propose a mixed-supervised hierarchical contrastive learning (HCL), which not only employs supervised contrastive learning to differentiate videos at different levels, but also utilizes cycle consistency as weak supervision to align discriminative temporal clips or spatial patches. Our model achieves state-of-the-art performance on four benchmarks especially under the most challenging 1-shot recognition setting.
引用
收藏
页码:297 / 313
页数:17
相关论文
共 50 条
  • [41] Cross-Modal Contrastive Pre-Training for Few-Shot Skeleton Action Recognition
    Lu, Mingqi
    Yang, Siyuan
    Lu, Xiaobo
    Liu, Jun
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (10) : 9798 - 9807
  • [42] Multi-Speed Global Contextual Subspace Matching for Few-Shot Action Recognition
    Yu, Tianwei
    Chen, Peng
    Dang, Yuanjie
    Huan, Ruohong
    Liang, Ronghua
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2344 - 2352
  • [43] Mask Mixup Model: Enhanced Contrastive Learning for Few-Shot Learning
    Xie, Kai
    Gao, Yuxuan
    Chen, Yadang
    Che, Xun
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [44] Multimodal Few-Shot Learning for Gait Recognition
    Moon, Jucheol
    Nhat Anh Le
    Minaya, Nelson Hebert
    Choi, Sang-Il
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 15
  • [45] Learning Compositional Representations for Few-Shot Recognition
    Tokmakov, Pavel
    Wang, Yu-Xiong
    Hebert, Martial
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 6381 - 6390
  • [46] CLG: Contrastive Label Generation with Knowledge for Few-Shot Learning
    Ma, Han
    Fan, Baoyu
    Ng, Benjamin K.
    Lam, Chan-Tong
    MATHEMATICS, 2024, 12 (03)
  • [47] ContrastNet: A Contrastive Learning Framework for Few-Shot Text Classification
    Chen, Junfan
    Zhang, Richong
    Mao, Yongyi
    Xu, Jie
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 10492 - 10500
  • [48] Boosting Few-Shot Classification with Lie Group Contrastive Learning
    He, Feihong
    Li, Fanzhang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT I, 2023, 14254 : 99 - 111
  • [49] Multi-granularity episodic contrastive learning for few-shot learning
    Zhu, Pengfei
    Zhu, Zhilin
    Wang, Yu
    Zhang, Jinglin
    Zhao, Shuai
    PATTERN RECOGNITION, 2022, 131
  • [50] Few-shot intent detection with mutual information and contrastive learning
    Yang, Shun
    Du, YaJun
    Huang, JiaMing
    Li, XianYong
    Du, ShangYi
    Liu, Jia
    Li, YanLi
    APPLIED SOFT COMPUTING, 2024, 167