MULTI-EXISTENCE OF MULTI-SOLITONS FOR THE SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION IN ONE DIMENSION

被引:11
作者
Combet, Vianney [1 ]
机构
[1] Univ Lille 1, UFR Math, F-59655 Villeneuve Dascq, France
关键词
NLS; multi-solitons; supercritical; asymptotic behavior; instability; MULTISOLITON SOLUTIONS; SOLITARY WAVES; THRESHOLD SOLUTIONS; CAUCHY-PROBLEM; STABILITY; CONSTRUCTION; GKDV;
D O I
10.3934/dcds.2014.34.1961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the L-2 supercritical generalized Korteweg-de Vries equation, we proved in [2] the existence and uniqueness of an N-parameter family of N-solitons. Recall that, for any N given solitons, we call N-soliton a solution of the equation which behaves as the sum of these N solitons asymptotically as t -> +infinity. In the present paper, we also construct an N-parameter family of N-solitons for the supercritical nonlinear Schrodinger equation in dimension 1. Nevertheless, we do not obtain any classification result; but recall that, even in subcritical and critical cases, no general uniqueness result has been proved yet.
引用
收藏
页码:1961 / 1993
页数:33
相关论文
共 17 条
[1]  
[Anonymous], 1997, ADV PARTIAL DIFFEREN
[2]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[3]   Multi-Soliton Solutions for the Supercritical gKdV Equations [J].
Combet, Vianney .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) :380-419
[4]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[5]   Threshold solutions for the focusing 3D cubic Schrodinger equation [J].
Duyckaerts, Thomas ;
Roudenko, Svetlana .
REVISTA MATEMATICA IBEROAMERICANA, 2010, 26 (01) :1-56
[6]   DYNAMIC OF THRESHOLD SOLUTIONS FOR ENERGY-CRITICAL NLS [J].
Duyckaerts, Thomas ;
Merle, Frank .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 18 (06) :1787-1840
[7]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[9]   STABILITY THEORY OF SOLITARY WAVES IN THE PRESENCE OF SYMMETRY .1. [J].
GRILLAKIS, M ;
SHATAH, J ;
STRAUSS, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (01) :160-197
[10]   Stability in H1 of the sum of K solitary waves for some nonlinear Schrodinger equations [J].
Martel, Y ;
Merle, F ;
Tsai, TP .
DUKE MATHEMATICAL JOURNAL, 2006, 133 (03) :405-466