Weierstrass gap sets for quadruples of points on compact Riemann surfaces

被引:6
作者
Ishii, N [1 ]
机构
[1] Nihon Univ, Coll Sci & Technol, Math Div Gen Educ, Funabashi, Chiba 274, Japan
关键词
D O I
10.1006/jabr.2000.8729
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a compact Riemann surface of genus g, and let P-1,..., P-4 be distinct points on M. We study the Weierstrass gap set G(P-1..., P-4) and prove the conjecture of Ballico and Kim on the upper bound of #G(P-1,..., P-4) affirmatively in case M is d-gonal curve of genus g greater than or equal to 5 with d = 2 or d greater than or equal to 5. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:44 / 66
页数:23
相关论文
共 4 条
[1]   Weierstrass multiple loci of n-pointed algebraic curves [J].
Ballico, E ;
Kim, SJ .
JOURNAL OF ALGEBRA, 1998, 199 (02) :455-471
[2]   The Weierstrass semigroup of a pair of points on a curve [J].
Homma, M .
ARCHIV DER MATHEMATIK, 1996, 67 (04) :337-348
[3]   ON THE INDEX OF THE WEIERSTRASS SEMIGROUP OF A PAIR OF POINTS ON A CURVE [J].
KIM, SJ .
ARCHIV DER MATHEMATIK, 1994, 62 (01) :73-82
[4]  
[No title captured]