Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices

被引:20
作者
Capitaine, M. [1 ]
机构
[1] CNRS, Inst Math Toulouse, Equipe Stat & Probabilites, F-31062 Toulouse 09, France
关键词
Random matrices; Spiked deformations of Wigner matrices; Spiked sample covariance matrices; Eigenvalues; Eigenvectors; Free probability; Subordination property; LARGEST EIGENVALUE; FREE CONVOLUTION; SPECTRAL DISTRIBUTION; CONVERGENCE;
D O I
10.1007/s10959-012-0416-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When some eigenvalues of a spiked additive deformation of a Wigner matrix or a spiked multiplicative deformation of a Wishart matrix separate from the bulk, we study how the corresponding eigenvectors project onto those of the perturbation. We point out that the subordination function relative to the free (additive or multiplicative) convolution plays an important part in the asymptotic behavior.
引用
收藏
页码:595 / 648
页数:54
相关论文
共 56 条
[51]   LIMITING SPECTRAL DISTRIBUTION FOR A CLASS OF RANDOM MATRICES [J].
YIN, YQ .
JOURNAL OF MULTIVARIATE ANALYSIS, 1986, 20 (01) :50-68
[52]   ON THE LIMIT OF THE LARGEST EIGENVALUE OF THE LARGE DIMENSIONAL SAMPLE COVARIANCE-MATRIX [J].
YIN, YQ ;
BAI, ZD ;
KRISHNAIAH, PR .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 78 (04) :509-521
[53]  
[No title captured]
[54]  
[No title captured]
[55]  
[No title captured]
[56]  
[No title captured]