The Bishop-Phelps-Bollobas property for operators between spaces of continuous functions

被引:17
作者
Acosta, Maria D. [1 ]
Becerra-Guerrero, Julio [1 ]
Choi, Yun Sung [2 ]
Ciesielski, Maciej [3 ]
Kim, Sun Kwang [4 ]
Lee, Han Ju [5 ]
Lourenco, Mary Lilian [6 ]
Martin, Miguel [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
[2] POSTECH, Dept Math, Pohang 790784, South Korea
[3] Poznan Univ Tech, PL-60965 Poznan, Poland
[4] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
[5] Dongguk Univ Seoul, Dept Math Educ, Seoul 100715, South Korea
[6] Univ Sao Paulo, Inst Matemat & Estat, BR-05311970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会; 新加坡国家研究基金会;
关键词
Banach space; Optimization; Norm-attaining operators; Bishop-Phelps theorem; Bishop-Phelps-Bollobas theorem; BANACH-SPACES; THEOREM; L1;
D O I
10.1016/j.na.2013.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the space of bounded linear operators between spaces of continuous functions on compact Hausdorff topological spaces has the Bishop-Phelps-Bollobas property. A similar result is also proved for the class of compact operators from the space of continuous functions vanishing at infinity on a locally compact and Hausdorff topological space into a uniformly convex space, and for the class of compact operators from a Banach space into a predual of an L-1-space. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 19 条
[1]  
Acosta M.D., 2013, PREPRINT
[2]   The Bishop-Phelps-Bolloba's theorem for operators [J].
Acosta, Maria D. ;
Aron, Richard M. ;
Garcia, Domingo ;
Maestre, Manuel .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) :2780-2799
[3]   THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS [J].
Acosta, Maria D. ;
Becerra-Guerrero, Julio ;
Garcia, Domingo ;
Maestre, Manuel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) :5911-5932
[4]   THE BISHOP-PHELPS-BOLLOBAS THEOREM AND ASPLUND OPERATORS [J].
Aron, R. M. ;
Cascales, B. ;
Kozhushkina, O. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) :3553-3560
[5]  
Aron R.M., 2013, PREPRINT
[6]   The Bishop-Phelps-Bollobas theorem for L(L1(μ), L∞[0,1]) [J].
Aron, Richard M. ;
Choi, Yun Sung ;
Garcia, Domingo ;
Maestre, Manuel .
ADVANCES IN MATHEMATICS, 2011, 228 (01) :617-628
[7]   A PROOF THAT EVERY BANACH SPACE IS SUBREFLEXIVE [J].
BISHOP, E ;
PHELPS, RR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (01) :97-&
[8]  
Bollobas B., 1970, B LOND MATH SOC, V2, P181, DOI DOI 10.1112/BLMS/2.2.181
[9]   A Bishop-Phelps-Bollobas type theorem for uniform algebras [J].
Cascales, B. ;
Guirao, A. J. ;
Kadets, V. .
ADVANCES IN MATHEMATICS, 2013, 240 :370-382
[10]  
Chica M., 2013, PREPRINT