JOINT ESTIMATION OF SPARSE MULTIVARIATE REGRESSION AND CONDITIONAL GRAPHICAL MODELS

被引:24
作者
Wang, Junhui [1 ,2 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60680 USA
[2] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Covariance selection; Gaussian graphical model; large p small n; multivariate regression; regularization; VARIABLE SELECTION; ADAPTIVE LASSO; COVARIANCE ESTIMATION; DIMENSION REDUCTION; LINEAR-REGRESSION; NETWORKS;
D O I
10.5705/ss.2013.192
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Multivariate regression model is a natural generalization of the classical univariate regression model for fitting multiple responses. In this paper, we propose a high-dimensional multivariate conditional regression model for constructing sparse estimates of the multivariate regression coefficient matrix that accounts for the dependency structure among the multiple responses. The proposed method decomposes the multivariate regression problem into a series of penalized conditional log-likelihood of each response conditional on the covariates and other responses. It allows simultaneous estimation of the sparse regression coefficient matrix and the sparse inverse covariance matrix. The asymptotic selection consistency and normality are established for the diverging dimension of the covariates and number of responses. The effectiveness of the proposed method is demonstrated in a variety of simulated examples as well as an application to the Glioblastoma multiforme cancer data.
引用
收藏
页码:831 / 851
页数:21
相关论文
共 29 条
[1]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[2]   Predicting multivariate responses in multiple linear regression [J].
Breiman, L ;
Friedman, JH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (01) :3-37
[3]   Extended Bayesian information criteria for model selection with large model spaces [J].
Chen, Jiahua ;
Chen, Zehua .
BIOMETRIKA, 2008, 95 (03) :759-771
[4]   Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection [J].
Chen, Lisha ;
Huang, Jianhua Z. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1533-1545
[5]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[6]  
Edwards D., 2000, INTRO GRAPHICAL MODE
[7]   NETWORK EXPLORATION VIA THE ADAPTIVE LASSO AND SCAD PENALTIES [J].
Fan, Jianqing ;
Feng, Yang ;
Wu, Yichao .
ANNALS OF APPLIED STATISTICS, 2009, 3 (02) :521-541
[8]   ROBUST GRAPHICAL MODELING OF GENE NETWORKS USING CLASSICAL AND ALTERNATIVE t-DISTRIBUTIONS [J].
Finegold, Michael ;
Drton, Mathias .
ANNALS OF APPLIED STATISTICS, 2011, 5 (2A) :1057-1080
[9]   PATHWISE COORDINATE OPTIMIZATION [J].
Friedman, Jerome ;
Hastie, Trevor ;
Hoefling, Holger ;
Tibshirani, Robert .
ANNALS OF APPLIED STATISTICS, 2007, 1 (02) :302-332
[10]   Sparse inverse covariance estimation with the graphical lasso [J].
Friedman, Jerome ;
Hastie, Trevor ;
Tibshirani, Robert .
BIOSTATISTICS, 2008, 9 (03) :432-441