Independence of Artin L-functions

被引:7
作者
Cimpoeas, Mircea [1 ]
Nicolae, Florin [2 ]
机构
[1] Simion Stoilow Inst Math, Res Unit 5, POB 1-764, Bucharest 014700, Romania
[2] Simion Stoilow Inst Math, POB 1-764, Bucharest 014700, Romania
关键词
Artin L-function; linear independence; algebraic independence; arithmetic functions; Dirichlet series; LINEAR INDEPENDENCE;
D O I
10.1515/forum-2018-0185
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K/Q be a finite Galois extension. Let chi(1),....., chi(r) be r >= 1 distinct characters of the Galois group with the associated Artin L-functions L(s, chi(1)), .....,L(s, chi(r)). Let m >= 0. We prove that the derivatives L-(k) (s, chi(j)), 1 <= j <= r, 0 <= k <= m, are linearly independent over the field of meromorphic functions of order < 1. From this it follows that the L-functions corresponding to the irreducible characters are algebraically independent over the field of meromorphic functions of order < 1.
引用
收藏
页码:529 / 534
页数:6
相关论文
共 7 条
[1]  
Artin E., 1923, Abh. Math. Semin. Univ. Hamb., V3, P89
[2]  
Artin Emil, 1931, Abh. Math. Sem. Hamburg, V8, P292
[3]   Linear independence of L-functions [J].
Kaczorowski, J ;
Molteni, G ;
Perelli, A .
FORUM MATHEMATICUM, 2006, 18 (01) :1-7
[4]  
Kaczorowski J., 1999, C. R. Math. Acad. Sci. Soc. R. Can., V21, P28
[5]   General linear independence of a class of multiplicative functions [J].
Molteni, G .
ARCHIV DER MATHEMATIK, 2004, 83 (01) :27-40
[6]  
Nicolae F, 2001, J REINE ANGEW MATH, V539, P179
[7]  
Stein E. M., 2003, Princeton Lecture in Analysis II. Complex Analysis, VII