Looking Back to Lower-Level Information in Few-Shot Learning

被引:6
作者
Yu, Zhongjie [1 ]
Raschka, Sebastian [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[2] Univ Wisconsin, 1300 Univ Ave,Med Sci Bldg, Madison, WI 53706 USA
关键词
machine learning; deep learning; few-shot learning; meta-learning; graph neural networks; image classification;
D O I
10.3390/info11070345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Humans are capable of learning new concepts from small numbers of examples. In contrast, supervised deep learning models usually lack the ability to extract reliable predictive rules from limited data scenarios when attempting to classify new examples. This challenging scenario is commonly known as few-shot learning. Few-shot learning has garnered increased attention in recent years due to its significance for many real-world problems. Recently, new methods relying on meta-learning paradigms combined with graph-based structures, which model the relationship between examples, have shown promising results on a variety of few-shot classification tasks. However, existing work on few-shot learning is only focused on the feature embeddings produced by the last layer of the neural network. The novel contribution of this paper is the utilization of lower-level information to improve the meta-learner performance in few-shot learning. In particular, we propose the Looking-Back method, which could use lower-level information to construct additional graphs for label propagation in limited data settings. Our experiments on two popular few-shot learning datasets,miniImageNet andtieredImageNet, show that our method can utilize the lower-level information in the network to improve state-of-the-art classification performance.
引用
收藏
页数:14
相关论文
共 50 条
[41]   A Comprehensive Survey of Few-shot Information Networks [J].
Zheng, Xinxin ;
Che, Feihu ;
Tao, Jianhua .
MACHINE INTELLIGENCE RESEARCH, 2025, 22 (01) :60-78
[42]   Fractal Few-Shot Learning [J].
Zhou, Fobao ;
Huang, Wenkai .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) :16353-16367
[43]   Learning multi-level weight-centric features for few-shot learning [J].
Liang, Mingjiang ;
Huang, Shaoli ;
Pan, Shirui ;
Gong, Mingming ;
Liu, Wei .
PATTERN RECOGNITION, 2022, 128
[44]   Part-Level Relationship Learning for Fine-Grained Few-Shot Image Classification [J].
Wang, Chuanming ;
Fu, Huiyuan ;
Liu, Peiye ;
Ma, Huadong .
IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 :1448-1460
[45]   Few-VulD: A Few-shot learning framework for software vulnerability detection☆ ☆ [J].
Zheng, Tianming ;
Liu, Haojun ;
Xu, Hang ;
Chen, Xiang ;
Yi, Ping ;
Wu, Yue .
COMPUTERS & SECURITY, 2024, 144
[46]   Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J].
Zhou, Bojun ;
Chen, Zhiyu .
Computer Engineering and Applications, 2024, 60 (08) :1-15
[47]   Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification [J].
Wang, Xixi ;
Wang, Xiao ;
Jiang, Bo ;
Luo, Bin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (12) :7789-7802
[48]   Dynamic Knowledge Path Learning for Few-Shot Learning [J].
Li, Jingzhu ;
Yin, Zhe ;
Yang, Xu ;
Jiao, Jianbin ;
Ding, Ye .
BIG DATA MINING AND ANALYTICS, 2025, 8 (02) :479-495
[49]   Graph augmentation for node-level few-shot learning [J].
Wu, Zongqian ;
Zhou, Peng ;
Ma, Junbo ;
Zhang, Jilian ;
Yuan, Guoqin ;
Zhu, Xiaofeng .
KNOWLEDGE-BASED SYSTEMS, 2024, 297
[50]   Unsupervised meta-learning for few-shot learning [J].
Xu, Hui ;
Wang, Jiaxing ;
Li, Hao ;
Ouyang, Deqiang ;
Shao, Jie .
PATTERN RECOGNITION, 2021, 116