The role of neuronal calcium sensors in balancing synaptic plasticity and synaptic dysfunction

被引:13
作者
Kerrigan, Talitha L. [1 ]
Whitcomb, Daniel J. [1 ]
Regan, Philip L. [1 ,2 ]
Cho, Kwangwook [1 ,2 ]
机构
[1] Univ Bristol, HenryWellcome Labs Integrat Neurosci & Endocrinol, Sch Clin Sci, Fac Med & Dent, Bristol BS1 3NY, Avon, England
[2] Univ Bristol, MRC Ctr Synapt Plast, Bristol BS1 3NY, Avon, England
基金
英国生物技术与生命科学研究理事会; 英国惠康基金;
关键词
neuronal calcium sensor; long-term synaptic plasticity; Alzheimer's disease; LONG-TERM DEPRESSION; AMPA RECEPTOR TRAFFICKING; ALZHEIMERS-DISEASE; BINDING-PROTEIN; CA2+; PICK1; TRANSMISSION; HIPPOCAMPUS; ACTIVATION; CALSENILIN;
D O I
10.3389/fnmol.2012.00057
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuronal calcium sensors (NCS) readily bind calcium and undergo conformational changes enabling them to interact and regulate specific target molecules. These interactions lead to dynamic alterations in protein trafficking that significantly impact upon synaptic function. Emerging evidence suggests that NCS and alterations in Ca2+ mobilization modulate glutamate receptor trafficking, subsequently determining the expression of different forms of synaptic plasticity. In this review, we aim to discuss the functional relevance of NCS in protein trafficking and their emerging role in synaptic plasticity. Their significance within the concept of "translational neuroscience" will also be highlighted, by assessing their potential as key molecules in neurodegeneration.
引用
收藏
页数:6
相关论文
共 56 条
[1]  
Ames JB, 2012, FRONT MOL NEUROSCI, V5, DOI [10.3389/fnmol.2012.00010, 10.1016/j.bbagen.2011.10.003]
[2]   Molecular mechanics of calcium-myristoyl switches [J].
Ames, JB ;
Ishima, R ;
Tanaka, T ;
Gordon, JI ;
Stryer, L ;
Ikura, M .
NATURE, 1997, 389 (6647) :198-202
[3]   Induction and expression mechanisms of postsynaptic NMDA receptor-independent homosynaptic long-term depression [J].
Anwyl, R .
PROGRESS IN NEUROBIOLOGY, 2006, 78 (01) :17-37
[4]   LONG-TERM DEPRESSION OF EXCITATORY SYNAPTIC TRANSMISSION AND ITS RELATIONSHIP TO LONG-TERM POTENTIATION [J].
ARTOLA, A ;
SINGER, W .
TRENDS IN NEUROSCIENCES, 1993, 16 (11) :480-487
[5]   Neuronal calcium signaling [J].
Berridge, MJ .
NEURON, 1998, 21 (01) :13-26
[6]   Abnormal localization of two neuronal calcium sensor proteins, visinin-like proteins (VILIPs)-1 and -3, in neocortical brain areas of Alzheimer disease patients [J].
Braunewell, KH ;
Riederer, P ;
Spilker, C ;
Gundelfinger, ED ;
Bogerts, B ;
Bernstein, HG .
DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2001, 12 (02) :110-116
[7]   Two pathways for tBID-induced cytochrome c release from rat brain mitochondria:: BAK- versus BAX-dependence [J].
Brustovetsky, N ;
Dubinsky, JM ;
Antonsson, B ;
Jemmerson, R .
JOURNAL OF NEUROCHEMISTRY, 2003, 84 (01) :196-207
[8]   Neuronal calcium sensor proteins:: generating diversity in neuronal Ca2+ signalling [J].
Burgoyne, Robert D. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (03) :182-193
[9]   Understanding the physiological roles of the neuronal calcium sensor proteins [J].
Burgoyne, Robert D. ;
Haynes, Lee P. .
MOLECULAR BRAIN, 2012, 5
[10]   Calsenilin: A calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment [J].
Buxbaum, JD ;
Choi, EK ;
Luo, YX ;
Lilliehook, C ;
Crowley, AC ;
Merriam, DE ;
Wasco, W .
NATURE MEDICINE, 1998, 4 (10) :1177-1181