Polyaniline-Derived Nitrogen-Containing Carbon Nanostructures with Different Morphologies as Anode Modifier in Microbial Fuel Cells

被引:12
作者
Lascu, Irina [1 ]
Locovei, Claudiu [2 ,3 ]
Bradu, Corina [1 ]
Gheorghiu, Cristina [4 ]
Tanase, Ana Maria [1 ]
Dumitru, Anca [2 ]
机构
[1] Univ Bucharest, Fac Biol, Splaiul Independenlei 91-95, Bucharest 050095, Romania
[2] Univ Bucharest, Fac Phys, POB MG-11, Magurele 077125, Romania
[3] Natl Inst Mat Phys, Atomistilor 405A, Magurele 077125, Romania
[4] Horia Hulubei Natl Inst R&D Phys & Nucl Engn, Extreme Light Infrastruct Nucl Phys ELI NP, POB MG-6, Magurele 077125, Romania
关键词
microbial fuel cell; anode modification; polyaniline; carbonization; nitrogen-containing carbon nanostructures; biofilm; microbial diversity; extracellular electron transfer; X-RAY-DIFFRACTION; BACTERIAL COMMUNITIES; POWER-GENERATION; GRAPHENE OXIDE; PERFORMANCE; NANOTUBES; WATER; NANOPARTICLES; INSIGHTS; ANILINE;
D O I
10.3390/ijms231911230
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anode modification with carbon nanomaterials is an important strategy for the improvement of microbial fuel cell (MFC) performance. The presence of nitrogen in the carbon network, introduced as active nitrogen functional groups, is considered beneficial for anode modification. In this aim, nitrogen-containing carbon nanostructures (NCNs) with different morphologies were obtained via carbonization of polyaniline and were further investigated as anode modifiers in MFCs. The present study investigates the influence of NCN morphology on the changes in the anodic microbial community and MFC performance. Results show that the nanofibrillar morphology of NCNs is beneficial for the improvement of MFC performance, with a maximum power density of 40.4 mW/m(2), 1.25 times higher than the anode modified with carbonized polyaniline with granular morphology and 2.15 times higher than MFC using the carbon cloth-anode. The nanofibrillar morphology, due to the well-defined individual nanofibers separated by microgaps and micropores and a better organization of the carbon network, leads to a larger specific surface area and higher conductivity, which can allow more efficient substrate transport and better bacterial colonization with greater relative abundances of Geobacter and Thermoanaerobacter, justifying the improvement of MFC performance.
引用
收藏
页数:16
相关论文
共 74 条
[1]   Conductive and nitrogen-enriched porous carbon nanostructure derived from poly (para-phenylenediamine) for energy conversion and storage applications [J].
Baroa, Mridula ;
Jaidev ;
Ramaprabhu, Sundara .
APPLIED SURFACE SCIENCE, 2020, 503
[2]   Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis [J].
Bhadra, Sambhu ;
Khastgir, Dipak .
POLYMER TESTING, 2008, 27 (07) :851-857
[3]   Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2′s q2-feature-classifier plugin [J].
Bokulich, Nicholas A. ;
Kaehler, Benjamin D. ;
Rideout, Jai Ram ;
Dillon, Matthew ;
Bolyen, Evan ;
Knight, Rob ;
Huttley, Gavin A. ;
Caporaso, J. Gregory .
MICROBIOME, 2018, 6
[4]   Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].
Bolyen, Evan ;
Rideout, Jai Ram ;
Dillon, Matthew R. ;
Bokulich, NicholasA. ;
Abnet, Christian C. ;
Al-Ghalith, Gabriel A. ;
Alexander, Harriet ;
Alm, Eric J. ;
Arumugam, Manimozhiyan ;
Asnicar, Francesco ;
Bai, Yang ;
Bisanz, Jordan E. ;
Bittinger, Kyle ;
Brejnrod, Asker ;
Brislawn, Colin J. ;
Brown, C. Titus ;
Callahan, Benjamin J. ;
Caraballo-Rodriguez, Andres Mauricio ;
Chase, John ;
Cope, Emily K. ;
Da Silva, Ricardo ;
Diener, Christian ;
Dorrestein, Pieter C. ;
Douglas, Gavin M. ;
Durall, Daniel M. ;
Duvallet, Claire ;
Edwardson, Christian F. ;
Ernst, Madeleine ;
Estaki, Mehrbod ;
Fouquier, Jennifer ;
Gauglitz, Julia M. ;
Gibbons, Sean M. ;
Gibson, Deanna L. ;
Gonzalez, Antonio ;
Gorlick, Kestrel ;
Guo, Jiarong ;
Hillmann, Benjamin ;
Holmes, Susan ;
Holste, Hannes ;
Huttenhower, Curtis ;
Huttley, Gavin A. ;
Janssen, Stefan ;
Jarmusch, Alan K. ;
Jiang, Lingjing ;
Kaehler, Benjamin D. ;
Bin Kang, Kyo ;
Keefe, Christopher R. ;
Keim, Paul ;
Kelley, Scott T. ;
Knights, Dan .
NATURE BIOTECHNOLOGY, 2019, 37 (08) :852-857
[5]  
Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/NMETH.3869, 10.1038/nmeth.3869]
[6]  
Mazzeu MAC, 2017, J AEROSP TECHNOL MAN, V9, P39
[7]  
Chaudhari HK, 1996, J APPL POLYM SCI, V62, P15, DOI 10.1002/(SICI)1097-4628(19961003)62:1<15::AID-APP3>3.0.CO
[8]  
2-V
[9]   Performance improvement of microbial fuel cell (MFC) using suitable electrode and Bioengineered organisms: A review [J].
Choudhury, Payel ;
Uday, Uma Shankar Prasad ;
Bandyopadhyay, Tarun Kanti ;
Ray, Rup Narayan ;
Bhunia, Biswanath .
BIOENGINEERED, 2017, 8 (05) :471-487
[10]   Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells [J].
Ci, Suqin ;
Wen, Zhenhai ;
Chen, Junhong ;
He, Zhen .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :71-74