Billiards: A singular perturbation limit of smooth Hamiltonian flows

被引:14
|
作者
Rom-Kedar, V. [1 ]
Turaev, D. [2 ]
机构
[1] Weizmann Inst Sci, Dept Math, Estrin Family Chair Comp Sci & Appl Math, IL-76910 Rehovot, Israel
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
HARD BALL SYSTEMS; CHAOTIC SCATTERING; BOUNCE TRAJECTORIES; SOFT BILLIARDS; 1ST INTEGRALS; POTENTIALS; POINTS; NONEXISTENCE; ERGODICITY; MECHANICS;
D O I
10.1063/1.4722010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have mixed phase space and a plethora of instabilities. Hence, it is difficult to analyze them, to visualize them, or even to interpret their numerical simulations. We survey an emerging methodology for analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4722010]
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Singular perturbation problems in a general smooth domain
    Gie, Gung-Min
    ASYMPTOTIC ANALYSIS, 2009, 62 (3-4) : 227 - 249
  • [12] The number of limit cycles of cubic Hamiltonian system with perturbation
    Wu, Cheng-qiang
    Xia, Yonghui
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2006, 7 (05) : 943 - 949
  • [13] The number of limit cycles of aquintic Hamiltonian system with perturbation
    Atabaigi, Ali
    Nyamoradi, Nemat
    Zangeneh, Hamid R. Z.
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2008, 13 (02): : 1 - 11
  • [14] BRANCHING HAMILTONIAN BILLIARDS
    VASILIEV, DG
    SAFAROV, IG
    DOKLADY AKADEMII NAUK SSSR, 1988, 301 (02): : 271 - 275
  • [15] Two-frequency perturbation of a smooth Hamiltonian system
    Vecheslavov, VV
    TECHNICAL PHYSICS, 2003, 48 (09) : 1079 - 1089
  • [16] Two-frequency perturbation of a smooth hamiltonian system
    V. V. Vecheslavov
    Technical Physics, 2003, 48 : 1079 - 1089
  • [17] Singular Limit of the Rotational Compressible Magnetohydrodynamic Flows
    Kwon, Young-Sam
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [18] Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator
    Serena Dipierro
    Aram L. Karakhanyan
    Enrico Valdinoci
    Applied Mathematics & Optimization, 2019, 80 : 679 - 713
  • [19] Limit Behaviour of a Singular Perturbation Problem for the Biharmonic Operator
    Dipierro, Serena
    Karakhanyan, Aram L.
    Valdinoci, Enrico
    APPLIED MATHEMATICS AND OPTIMIZATION, 2019, 80 (03): : 679 - 713
  • [20] Smooth mixing flows with purely singular spectra
    Fayad, B
    DUKE MATHEMATICAL JOURNAL, 2006, 132 (02) : 371 - 391