Billiards: A singular perturbation limit of smooth Hamiltonian flows

被引:14
|
作者
Rom-Kedar, V. [1 ]
Turaev, D. [2 ]
机构
[1] Weizmann Inst Sci, Dept Math, Estrin Family Chair Comp Sci & Appl Math, IL-76910 Rehovot, Israel
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London, England
基金
英国工程与自然科学研究理事会; 以色列科学基金会;
关键词
HARD BALL SYSTEMS; CHAOTIC SCATTERING; BOUNCE TRAJECTORIES; SOFT BILLIARDS; 1ST INTEGRALS; POTENTIALS; POINTS; NONEXISTENCE; ERGODICITY; MECHANICS;
D O I
10.1063/1.4722010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Nonlinear multi-dimensional Hamiltonian systems that are not near integrable typically have mixed phase space and a plethora of instabilities. Hence, it is difficult to analyze them, to visualize them, or even to interpret their numerical simulations. We survey an emerging methodology for analyzing a class of such systems: Hamiltonians with steep potentials that limit to billiards. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4722010]
引用
收藏
页数:21
相关论文
共 50 条