Effect of Calcination Temperature on the Lithiation Capacities of Carbon-Coated Titania Nanotubes Synthesized by Anodization

被引:11
作者
Seo, Min-Su [1 ]
Lee, Hyukjae [1 ]
机构
[1] Andong Natl Univ, Mat Res Ctr Energy & Green Technol, Andong 760745, South Korea
基金
新加坡国家研究基金会;
关键词
titania nanotubes; anodization; Li-ion batteries; lithiation capacity; calcination temperature; RAPID BREAKDOWN ANODIZATION; OXIDE NANOTUBE; TIO2; NANOSTRUCTURES;
D O I
10.1007/s13391-012-2009-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon-coated titania nanotubes are synthesized via anodization in perchlorate containing electrolyte and subsequent hydrothermal reaction with glucose. Carbon coating improves the lithiation capacity of the titania nanotubes only when calcined at temperatures above 600 degrees C, and the maximum capacity is similar to 162 mAhg(-1) at the 50th cycle from the titania nanotubes calcined at 700 degrees C. The improved capacity of carbon-coated titania nanotubes is caused by the enhanced conductivity from the carbon. This is different from the role of the carbon coating in the hydrothermally prepared carbon-coated titania nanotubes, in which the coated carbon limits severe agglomeration.
引用
收藏
页码:259 / 262
页数:4
相关论文
共 17 条
[1]   Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J].
Deng, Da ;
Kim, Min Gyu ;
Lee, Jim Yang ;
Cho, Jaephil .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (08) :818-837
[2]   A Novel Method for Synthesis of Titania Nanotube Powders using Rapid Breakdown Anodization [J].
Fahim, Narges F. ;
Sekino, Tohru .
CHEMISTRY OF MATERIALS, 2009, 21 (09) :1967-1979
[3]   Titanium oxide nanotube arrays prepared by anodic oxidation [J].
Gong, D ;
Grimes, CA ;
Varghese, OK ;
Hu, WC ;
Singh, RS ;
Chen, Z ;
Dickey, EC .
JOURNAL OF MATERIALS RESEARCH, 2001, 16 (12) :3331-3334
[4]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163
[5]   Titanate nanotubes and nanorods prepared from rutile powder [J].
Lan, Y ;
Gao, XP ;
Zhu, HY ;
Zheng, ZF ;
Yan, TY ;
Wu, F ;
Ringer, SP ;
Song, DY .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (08) :1310-1318
[6]   TiO2 nanotube arrays annealed in CO exhibiting high performance for lithium ion intercalation [J].
Liu, Dawei ;
Zhang, Yunhuai ;
Xiao, Peng ;
Garcia, Betzaida Batalla ;
Zhang, Qifeng ;
Zhou, Xiaoyuan ;
Jeong, Yoon-Ha ;
Cao, Guozhong .
ELECTROCHIMICA ACTA, 2009, 54 (27) :6816-6820
[7]   Smooth anodic TiO2 nanotubes [J].
Macak, JM ;
Tsuchiya, H ;
Taveira, L ;
Aldabergerova, S ;
Schmuki, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (45) :7463-7465
[8]   Citrate-derived carbon nanocoatings for poorly conducting cathode -: A detailed study using TiO2 substrate materials [J].
Moskon, J. ;
Dominko, R. ;
Gaberscek, M. ;
Cerc-Korosec, R. ;
Jamnik, J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (10) :A1805-A1811
[9]   Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries [J].
Park, Sang-Jun ;
Kim, Hansu ;
Kim, Young-Jun ;
Lee, Hyukjae .
ELECTROCHIMICA ACTA, 2011, 56 (15) :5355-5362
[10]   Lithium Ion Insertion in Titania Nanotube Powders Synthesized by Rapid Breakdown Anodization [J].
Park, Sang-Jun ;
Paek, Yeong-Kyeun ;
Lee, Hyukjae ;
Kim, Young-Jun .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2010, 13 (07) :A85-A87