A class of explicit two-step Runge-Kutta methods with enlarged stability regions for parallel computers

被引:0
作者
Podhaisky, H [1 ]
Weiner, R [1 ]
机构
[1] Univ Halle Wittenberg, Inst Numer Math, D-06120 Halle, Germany
来源
PARALLEL COMPUTATION | 1999年 / 1557卷
关键词
Runge-Kutta methods; parallelism; two-step methods; stability AMS(MOS) subject classification (1991); 65M12; 65M20;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we study a class of explicit pseudo two-step Runge-Kutta (EPTRK) methods for first-order ODEs for parallel computers. We investigate linear stability and derive methods with enlarged stability regions. In numerical experiments on a shared memory computer we compare a parallel variable step size EPTRK implementation with the efficient sequential Runge-Kutta method dopri5.
引用
收藏
页码:68 / 77
页数:10
相关论文
共 8 条
[1]   Numerical experiments with some explicit pseudo two-step RK methods on a shared memory computer [J].
Cong, NH ;
Podhaisky, H ;
Weiner, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (02) :107-116
[2]  
CONG NH, 1997, GEN FAMILY PSEUDO 2
[3]  
FEI JG, 1994, CHINESE J NUMERICAL, V16, P23
[4]  
HAIRER, 1993, SOLVING ORDINARY DIF, V1
[5]   Exponential integrators for large systems of differential equations [J].
Hochbruck, M ;
Lubich, C ;
Selhofer, H .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1552-1574
[6]  
PODHAISKY H, 1998, PARALLEL EXPLIZITE 2
[7]   MATRIX-FREE W-METHODS USING A MULTIPLE ARNOLDI ITERATION [J].
SCHMITT, BA ;
WEINER, R .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (1-3) :307-320
[8]  
Wanner G., 1996, Springer Series in Computational Mathematics, Springer Ser.Comp.Mathem, V375