Christoffel functions with power type weights

被引:3
作者
Danka, Tivadar [3 ]
Totik, Vilmos [1 ,2 ]
机构
[1] Univ Szeged, Bolyai Inst, MTA SZTE Anal & Stochast Res Grp, Aradi V Tere 1, H-6720 Szeged, Hungary
[2] Univ S Florida, Dept Math & Stat, 4202 E Fowler Ave,CMC342, Tampa, FL 33620 USA
[3] Univ Szeged, Bolyai Inst, Potential Anal Res Grp, ERC Adv Grant 267055, Aradi V Tere 1, H-6720 Szeged, Hungary
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Christoffel functions; asymptotics; power type weights; Jordan curves and arcs; Bessel functions; fast decreasing polynomials; equilibrium measures; Green's functions; ORTHOGONAL POLYNOMIALS; UNIVERSALITY LIMITS; ZEROS;
D O I
10.4171/JEMS/776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Precise asymptotics for Christoffel functions are established for power type weights on unions of Jordan curves and arcs. The asymptotics involve the equilibrium measure of the support of the measure. The result at the endpoints of arc components is obtained from the corresponding asymptotics for internal points with respect to a different power weight. On curve components the asymptotic formula is proved via a sharp form of Hilbert's lemniscate theorem while taking polynomial inverse images. The situation is completely different on arc components, where the local asymptotics is obtained via a discretization of the equilibrium measure with respect to the zeros of an associated Bessel function. The proofs are potential-theoretical, and fast decreasing polynomials play an essential role in them.
引用
收藏
页码:747 / 796
页数:50
相关论文
共 50 条
  • [31] A dual-type problem to Christoffel function
    Bello, Glenier
    Bello-Hernandez, Manuel
    JOURNAL OF APPROXIMATION THEORY, 2021, 264
  • [32] A Maximal Function Approach to Christoffel Functions and Nevai's Operators
    Lubinsky, D. S.
    CONSTRUCTIVE APPROXIMATION, 2011, 34 (03) : 357 - 369
  • [33] Relating Leverage Scores and Density using Regularized Christoffel Functions
    Pauwels, Edouard
    Bach, Francis
    Vert, Jean-Philippe
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [34] Data-driven Reachability using Christoffel Functions and Conformal Prediction
    Tebjou, Abdelmouaiz
    Frehse, Goran
    Chamroukhi, Faicel
    CONFORMAL AND PROBABILISTIC PREDICTION WITH APPLICATIONS, VOL 204, 2023, 204 : 193 - 212
  • [35] A Christoffel-Darboux-type formula for Szego polynomials and polynomial evaluation
    Skrzipek, MR
    APPLICATIONS AND COMPUTATION OF ORTHOGONAL POLYNOMIALS, 1999, 131 : 203 - 216
  • [36] Polynomial approximation with Pollaczek-type weights. A survey
    Mastroianni, Giuseppe
    Notarangelo, Incoronata
    APPLIED NUMERICAL MATHEMATICS, 2020, 149 : 83 - 98
  • [37] Turan type inequalities for Struve functions
    Baricz, Arpad
    Ponnusamy, Saminathan
    Singh, Sanjeev
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 971 - 984
  • [38] Orthogonal Polynomials with the Prudnikov-Type Weights
    Yakubovich, S.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (01)
  • [39] Orthonormal polynomials with exponential-type weights
    Jung, H. S.
    Sakai, R.
    JOURNAL OF APPROXIMATION THEORY, 2008, 152 (02) : 215 - 238
  • [40] Rational Functions with a General Distribution of Poles on the Real Line Orthogonal with Respect to Varying Exponential Weights: I
    K. T.-R. McLaughlin
    A. H. Vartanian
    X. Zhou
    Mathematical Physics, Analysis and Geometry, 2008, 11 : 187 - 364