Mg2B2O5 Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance

被引:327
作者
Sheng, Ouwei [1 ]
Jin, Chengbin [1 ]
Luo, Jianmin [1 ]
Yuan, Huadong [1 ]
Huang, Hui [1 ]
Gan, Yongping [1 ]
Zhang, Jun [1 ]
Xia, Yang [1 ]
Liang, Chu [1 ]
Zhang, Wenkui [1 ]
Tao, Xinyong [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state lithium ion batteries; Mg2B2O5; nanowires; mechanical property; flame-retardant performance; LITHIUM METAL ANODE; POLYMER ELECTROLYTE; BATTERIES; STABILITY; ENERGY; LIQUID; ELECTRODEPOSITION; NANOPARTICLES; COMPOSITES; LITFSI;
D O I
10.1021/acs.nanolett.8b00659
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High ionic conductivity, satisfactory mechanical properties, and wide electrochemical windows are crucial factors for composite electrolytes employed in solid-state lithium-ion batteries (SSLIBs). Based on these considerations, we fabricate Mg2B2O5 nanowire enabled poly(ethylene oxide) (PEO)-based solid-state electrolytes (SSEs). Notably, these SSEs have enhanced ionic conductivity and a large electrochemical window. The elevated ionic conductivity is attributed to the improved motion of PEO chains and the increased Li migrating pathway on the interface between Mg2B2O5 and PEO LiTFSI. Moreover, the interaction between Mg2B2O5 and -SO2- in TFSI- anions could also benefit the improvement of conductivity. In addition, the SSEs containing Mg2B2O5 nanowires exhibit improved the mechanical properties and flame-retardant performance, which are all superior to the pristine PEO-LiTFSI electrolyte. When these multifunctional SSEs are paired with LiFePO4 cathodes and lithium metal anodes, the SSLIBs show better rate performance and higher cyclic capacity of 150, 106, and 50 mAh g(-1) under 0.2 C at 50, 40, and 30 degrees C. This strategy of employing Mg2B2O5 nanowires provides the design guidelines of assembling multifunctional SSLIBs with high ionic conductivity, excellent mechanical properties, and flame-retardant performance at the same time.
引用
收藏
页码:3104 / 3112
页数:9
相关论文
共 68 条
[1]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[2]   Fire retardant, superionic solid state polymer electrolyte membranes for lithium ion batteries [J].
Cao, Jinwei ;
He, Ruixuan ;
Kyu, Thein .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2017, 15 :68-75
[3]   The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons [J].
Chen, Renjie ;
Qu, Wenjie ;
Guo, Xing ;
Li, Li ;
Wu, Feng .
MATERIALS HORIZONS, 2016, 3 (06) :487-516
[4]   Review-Li Metal Anode in Working Lithium-Sulfur Batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (01) :A6058-A6072
[5]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[6]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[7]   Flame retardancy of highly filled polyamide 6/clay nanocomposites [J].
Dasari, Aravind ;
Yu, Zhong-Zhen ;
Mai, Yiu-Wing ;
Liu, Songlin .
NANOTECHNOLOGY, 2007, 18 (44)
[8]   Molecular interaction and ionic conductivity of polyethylene oxide-LiClO4 nanocomposites [J].
Dey, Arup ;
Karan, S. ;
De, S. K. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2010, 71 (03) :329-335
[9]   Influence of Fe2O3 Nanofiller Shape on the Conductivity and Thermal Properties of Solid Polymer Electrolytes: Nanorods versus Nanospheres [J].
Do, Nhu Suong T. ;
Schaetzl, Dean M. ;
Dey, Barnali ;
Seabaugh, Alan C. ;
Fullerton-Shirey, Susan K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (40) :21216-21223
[10]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)