Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments

被引:134
作者
Bohner, Martin [1 ]
Hassan, Taher S. [2 ,3 ]
Li, Tongxing [4 ,5 ]
机构
[1] Missouri S&T, Dept Math & Stat, Rolla, MO 65409 USA
[2] Univ Hail, Fac Sci, Dept Math, Hail 2440, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
[4] Linyi Univ, LinDa Inst, Shandong Prov Key Lab Network Based Intelligent C, Linyi 276005, Shandong, Peoples R China
[5] Linyi Univ, Sch Informat Sci & Engn, Linyi 276005, Shandong, Peoples R China
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2018年 / 29卷 / 02期
关键词
Advanced argument; Delayed argument; Half-linear; Oscillation behavior; Second-order dynamic equation; Time scale; DELAY;
D O I
10.1016/j.indag.2017.10.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study oscillatory behavior of solutions to a class of second-order half-linear dynamic equations with deviating arguments under the assumptions that allow applications to dynamic equations with delayed and advanced arguments. Several improved Fite-Hille-Wintner-type criteria are obtained that do not need some restrictive assumptions required in related results. Illustrative examples and conclusions are presented to show that these criteria are sharp for differential equations and provide sharper estimates for oscillation of corresponding q-difference equations. (C) 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:548 / 560
页数:13
相关论文
共 25 条
[1]   Oscillatory behavior of second-order half-linear damped dynamic equations [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 254 :408-418
[2]   Oscillation criteria for second-order dynamic equations on time scales [J].
Agarwal, Ravi P. ;
Bohner, Martin ;
Li, Tongxing ;
Zhang, Chenghui .
APPLIED MATHEMATICS LETTERS, 2014, 31 :34-40
[3]   New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations [J].
Agarwal, Ravi P. ;
Zhang, Chenghui ;
Li, Tongxing .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 225 :822-828
[4]   Oscillation criteria for second-order retarded differential equations [J].
Agarwal, RP ;
Shieh, SL ;
Yeh, CC .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (04) :1-11
[5]  
Agarwal RP., 2005, Discrete oscillation theory, DOI [10.1155/9789775945198, DOI 10.1155/9789775945198]
[6]  
[Anonymous], 2002, Oscillation Theory for Second Order Linear, Half Linear, Superlinear and Sublinear Dynamic Equations
[7]  
Bohner M., 2001, Dynamic equations on time scales: an introduction with applications, DOI DOI 10.1007/978-1-4612-0201-1
[8]   Kamenev-type criteria for nonlinear damped dynamic equations [J].
Bohner Martin ;
Li TongXing .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) :1445-1452
[9]   OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DELAY EQUATIONS [J].
ERBE, L .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (01) :49-56
[10]  
Erbe L., 2008, Int. J. Differ. Equ, V3, P227