New shape functions for triangular p-FEM using integrated Jacobi polynomials

被引:44
作者
Beuchler, S
Schoeberl, J
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
D O I
10.1007/s00211-006-0681-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the second order boundary value problem -del center dot (A(x,y) del u)=f is discretized by the Finite Element Method using piecewise polynomial functions of degree p on a triangular mesh. On the reference element, we define integrated Jacobi polynomials as interior ansatz functions. If A is a constant function on each triangle and each triangle has straight edges, we prove that the element stiffness matrix has not more than 25/2 p(2) nonzero matrix entries. An application for preconditioning is given. Numerical examples show the advantages of the proposed basis.
引用
收藏
页码:339 / 366
页数:28
相关论文
共 33 条
[31]  
Szabo B., 2021, Finite element analysis, DOI 10.1002/9781119426479
[32]  
TRICOMI FG, 1955, VORLESUNGEN ORTHOGON
[33]  
[No title captured]