New shape functions for triangular p-FEM using integrated Jacobi polynomials

被引:41
作者
Beuchler, S
Schoeberl, J
机构
[1] Johannes Kepler Univ Linz, Inst Computat Math, A-4040 Linz, Austria
[2] Austrian Acad Sci, Johann Radon Inst Computat & Appl Math, A-4040 Linz, Austria
关键词
D O I
10.1007/s00211-006-0681-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the second order boundary value problem -del center dot (A(x,y) del u)=f is discretized by the Finite Element Method using piecewise polynomial functions of degree p on a triangular mesh. On the reference element, we define integrated Jacobi polynomials as interior ansatz functions. If A is a constant function on each triangle and each triangle has straight edges, we prove that the element stiffness matrix has not more than 25/2 p(2) nonzero matrix entries. An application for preconditioning is given. Numerical examples show the advantages of the proposed basis.
引用
收藏
页码:339 / 366
页数:28
相关论文
共 33 条
[1]   A preconditioner based on domain decomposition for h-p finite-element approximation on quasi-uniform meshes [J].
Ainsworth, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1358-1376
[2]   An additive Schwarz preconditioner for p-version boundary element approximation of the hypersingular operator in three dimensions [J].
Ainsworth, M ;
Guo, BQ .
NUMERISCHE MATHEMATIK, 2000, 85 (03) :343-366
[3]  
AINSWORTH M, 2003, 0347 TICAM
[4]  
Andrews GE, 1999, ENCY MATH ITS APPL, V71
[5]  
[Anonymous], 1964, Handbook of mathematical functions
[6]   EFFICIENT PRECONDITIONING FOR THE RHO-VERSION FINITE-ELEMENT METHOD IN 2 DIMENSIONS [J].
BABUSKA, I ;
CRAIG, A ;
MANDEL, J ;
PITKARANTA, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :624-661
[7]   THE PROBLEM OF SELECTING THE SHAPE FUNCTIONS FOR A P-TYPE FINITE-ELEMENT [J].
BABUSKA, I ;
GRIEBEL, M ;
PITKARANTA, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1891-1908
[8]  
BERNARDI C, 1993, R92039 U P M CUR
[9]  
Bernardi C, 1997, Handbook of numerical analysis, VV, DOI [10.1016/S1570-8659(97)80003-8, DOI 10.1016/S1570-8659(97)80003-8]
[10]   Optimal extensions on tensor-product meshes [J].
Beuchler, S ;
Schöberl, J .
APPLIED NUMERICAL MATHEMATICS, 2005, 54 (3-4) :391-405