Approximating the epidemic curve

被引:46
作者
Barbour, A. D. [1 ,2 ]
Reinert, G. [3 ]
机构
[1] Univ Zurich, CH-8006 Zurich, Switzerland
[2] Natl Univ Singapore, Singapore, Singapore
[3] Univ Oxford, Oxford OX1 2JD, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2013年 / 18卷
基金
英国工程与自然科学研究理事会; 澳大利亚研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Epidemics; Reed-Frost; configuration model; deterministic approximation; branching processes; MATHEMATICAL-THEORY; SIR DYNAMICS;
D O I
10.1214/EJP.v18-2557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Many models of epidemic spread have a common qualitative structure. The numbers of infected individuals during the initial stages of an epidemic can be well approximated by a branching process, after which the proportion of individuals that are susceptible follows a more or less deterministic course. In this paper, we show that both of these features are consequences of assuming a locally branching structure in the models, and that the deterministic course can itself be determined from the distribution of the limiting random variable associated with the backward, susceptibility branching process. Examples considered include a stochastic version of the Kermack & McKendrick model, the Reed-Frost model, and the Volz configuration model.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 50 条
[31]   The Epidemic Failure Cycle hypothesis: Towards understanding the global community's recent failures in responding to an epidemic [J].
Richter, Dirk ;
Zuercher, Simeon .
JOURNAL OF INFECTION AND PUBLIC HEALTH, 2021, 14 (11) :1614-1619
[32]   Controlling the Spatial Spread of a Xylella Epidemic [J].
Anita, Sebastian ;
Capasso, Vincenzo ;
Scacchi, Simone .
BULLETIN OF MATHEMATICAL BIOLOGY, 2021, 83 (04)
[33]   Campus Epidemic-Prevention System [J].
Hsueh, Ya-Hsin ;
Su, Po-Cheng ;
Ke, Ming-Ta ;
Huang, Hsiang-Lung ;
Chiang, Min-Xiang ;
Chiang, Meng-Han ;
Su, Bo-Yuan .
IEEE CONSUMER ELECTRONICS MAGAZINE, 2021, 10 (06) :38-44
[34]   Early estimates of epidemic final sizes [J].
Brauer, Fred .
JOURNAL OF BIOLOGICAL DYNAMICS, 2019, 13 :23-30
[35]   Dengue epidemic in China before 1978 [J].
Guo Xiang ;
Chen Haiyang ;
Lin Ruifeng ;
Liu Xiaohua ;
Li Meng ;
Ge Liu ;
Deng Wenting ;
Wu Rangke ;
Zhou Xiaohong .
贫困所致传染病(英文), 2024, 13 (05)
[36]   An SIS epidemic model with individual variation [J].
Pollett P.K. .
Mathematical Biosciences and Engineering, 2024, 21 (04) :5446-5455
[37]   When Is a Network Epidemic Hard to Eliminate? [J].
Drakopoulos, Kimon ;
Ozdaglar, Asuman ;
Tsitsiklis, John N. .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (01) :1-14
[38]   A Note on the Derivation of Epidemic Final Sizes [J].
Miller, Joel C. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2012, 74 (09) :2125-2141
[39]   Epidemic Dynamics Revealed in Dengue Evolution [J].
Bennett, S. N. ;
Drummond, A. J. ;
Kapan, D. D. ;
Suchard, M. A. ;
Munoz-Jordan, J. L. ;
Pybus, O. G. ;
Holmes, E. C. ;
Gubler, D. J. .
MOLECULAR BIOLOGY AND EVOLUTION, 2010, 27 (04) :811-818
[40]   Nepalese origin of cholera epidemic in Haiti [J].
Frerichs, R. R. ;
Keim, P. S. ;
Barrais, R. ;
Piarroux, R. .
CLINICAL MICROBIOLOGY AND INFECTION, 2012, 18 (06) :E158-E163